Skip to main content

Quantum Monte Carlo Computation of Static and Time-Dependent Thermodynamic Properties of Lennard-Jones Crystals

  • Chapter
Microscopic Aspects of Nonlinearity in Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 264))

  • 147 Accesses

Abstract

Recently there has been much interest in the study of the thermodynamics of many-body quantum mechanical systems by means of Quantum Monte Carlo (QMC) computer simulation techniques(1–4). Applications of QMC methods to the study of spin systems, the Hubbard model, and to systems of boson and fermion particles have shown them to be effective in the accurate computation of static thermodynamic properties(1–4). However, in spite of these successful QMC treatments of static thermodynamics, the determination of time-dependent thermodynamic averages (spin correlation functions, atomic displacement correlation functions, etc.), related to the time-dependent response of quantum many-body systems, has been less forthcoming. Aside from the increased bookkeeping difficulties associated with having to determine averages which depend on the new variable of time, one finds that this variable enters time-dependent computed averages in such a way that analytic continuation techniques, commonly employed in Green’s function treatments of such properties, are of little or no value in developing QMC methods for this problem.(3,5)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. NATO Advanced Research Workshop on Monte Carlo Methods in Quantum Problems, ed. Malvin H. Kalos, D. Reidel Pub. Co., Hingham, MA, USA (1984).

    Google Scholar 

  2. Quantum Monte Carlo Methods in Equilibrium and Non-Equilibrium Systems, ed. M. Suzuki, Springer-Verlag, Berlin and New York (1987).

    Google Scholar 

  3. Journal of Statistical Physics 43, pp. 729–1243 (1986).

    Google Scholar 

  4. International Workshop on Quantum Simulations of Condensed Matter Phenomena, eds. J. D. Doll and J. E. Gubernatis, World Scientific, Singapore (1990).

    Google Scholar 

  5. E. L. Pollock and D. M. Ceperley, Phys. Rev. B30, 2555–2568 (1984).

    ADS  Google Scholar 

  6. Statistical Physics, L. D. Landau and E. M. Lifshitz, Pergamon Press, Oxford (1980), p. 537.

    Google Scholar 

  7. A. R. McGurn, P. Ryan, A. A. Maradudin, and R. F. Wallis, Phys. Rev. B40, 2407–2413 (1989).

    ADS  Google Scholar 

  8. H. Mori, Prog. Theor. Phys. 34, 399–416 (1965).

    Article  ADS  Google Scholar 

  9. A. A. Maradudin, R. F. Wallis, A. R. McGurn, M. S. Daw, and A.J.C. Ladd, in Lattice Dynamics and Semiconductor Physics, eds. J. Xia, Z. Gan, R. Han, G. Qin, G. Yang, H. Zheng, Z. Zhong, and B. Zhu, World Scientific, Singapore, (1990), pp. 103–157.

    Google Scholar 

  10. F. Gürsey, Proc. Camb. Phil. Soc. 46, 182 (1950).

    Article  ADS  MATH  Google Scholar 

  11. A. A. Maradudin, in Physics of Phonons, ed. T. Paszkiewicz, Springer-Verlag, Berlin (1987), pp. 1–47.

    Chapter  Google Scholar 

  12. H. F. Trotter, Proc. Am. Math. Soc. 110, 545 551 (1959)

    MathSciNet  Google Scholar 

  13. M. Suzuki, Prog. Theor Phys. 56, 145–1469 (1976).

    Google Scholar 

  14. M. Takahashi and M. Imada, J. Phys. Soc. Jpn 53, 3765–3769 (1984).

    Article  ADS  Google Scholar 

  15. Applications of Monte Carlo Methods in Statistical Physics, ed. K. Binder, Springer-Verlag, Berlin (1984).

    Google Scholar 

  16. S. W. Lovesey, Condensed Matter Physics: Dynamic Correlations, second edition, Benjamin/Cummings Pub. Co., Inc. (1986), Ch. 1.

    Google Scholar 

  17. S. W. Lovesey, in Physics in One Dimension, eds. J. Bernasconi and T. Schneider, Springer-Verlag, Berlin (1981) pp. 129–139.

    Chapter  Google Scholar 

  18. H. Tomita and H. Mashiyama, Prog. Theor. Phys. 48, 1133–1149 (1972).

    Article  ADS  Google Scholar 

  19. K. Tomita and H. Tomita, Prog. Theor. Phys. 45, 1407–1436 (1971).

    Article  ADS  Google Scholar 

  20. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path-Integrals, McGraw-Hill, New York (1965), Ch. 7.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

McGurn, A.R., Maradudin, A.A., Wallis, R.F. (1991). Quantum Monte Carlo Computation of Static and Time-Dependent Thermodynamic Properties of Lennard-Jones Crystals. In: Bishop, A.R., Pokrovsky, V.L., Tognetti, V. (eds) Microscopic Aspects of Nonlinearity in Condensed Matter. NATO ASI Series, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5961-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5961-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5963-0

  • Online ISBN: 978-1-4684-5961-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics