Statistical Properties of the Transition to Spatiotemporal Chaos

  • S. Ciliberto
Part of the NATO ASI Series book series (NSSB, volume 264)


It is nowaday well established, both theoretically and experimentally, that the chaotic time evolution observed in many natural phenomena may be produced by the non-linear interaction of a small number of degrees of freedom1 In spatially extended systems low dimensional chaos is often associated with relevant spatial effects, such as mode competition, travelling waves, localized oscillations2, but the unpredictable time evolution does not influence the spatial order, that is to say the correlation length is comparable with the size of the system. However an extended system may present a chaotic evolution both in space and time that, instead, implies the presence of many degrees of freedom3. The study of the transition from low dimensional chaos to spatiotemporal chaos is a subject of current interest that is not jet completely understood. For example it is important to investigate whether there are general features that are independent of the specific system under study and whether a thermodynamic description may be appropriate3,4.


Fourier Mode Cellular Automaton Model Roll Axis Spatial Order Spatiotemporal Chaos 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a general review of low dimensional chaos see for example: J. P. Eckmann, D. Ruelle, Rev. Mod. Phys. 1987; P. Berge, Y. Pomeau, Ch. Vidal, L’Ordre dans le Chaos (Hermann, Paris 1984).zbMATHGoogle Scholar
  2. 2.
    A. Libchaber, C. Laroche, S. Fauve, J. Physique Lett. 43, 221, (1982);CrossRefGoogle Scholar
  3. 2a.
    M. Giglio, S. Musazzi, U. Perini, Phys. Rev. Lett. 53, 2402 (1984);ADSCrossRefGoogle Scholar
  4. 2b.
    M. Dubois, M. Rubio, P. Berge, Phys. Rev. Lett. 51, 1446 (1983);MathSciNetADSCrossRefGoogle Scholar
  5. 2c.
    S. Ciliberto, M. A. Rubio, Phys. Rev. Lett. 58, 25 (1987);CrossRefGoogle Scholar
  6. 2d.
    S. Ciliberto, J. P. Gollub, J. Fluid Mech. 158, 381 (1984);MathSciNetADSCrossRefGoogle Scholar
  7. 2e.
    S. Ciliberto, Europhysics Letters 4, 685 (1987).ADSCrossRefGoogle Scholar
  8. 3.
    P.C. Hohenberg, B.Shraiman, Physica 37D, 109 (1989).MathSciNetADSCrossRefGoogle Scholar
  9. 4.
    S. Ciliberto, M. Caponeri, Phys. Rev. Lett. 64, 2775 (1990).ADSCrossRefGoogle Scholar
  10. 5.
    G. L. Oppo, R. Kapral Phys. Rev. A 3, 4219 (1986).ADSCrossRefGoogle Scholar
  11. 6.
    K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985);ADSzbMATHCrossRefGoogle Scholar
  12. 6a.
    J. Crutchfield K. Kaneko in “Direction in Chaos”, B. L. Hao (World Scientific Singapore 1987); R. Lima, Bunimovich preprint.Google Scholar
  13. 7.
    H. Chate’, P. Manneville, Phys. Rev. Lett. 54, 112 (1987);ADSCrossRefGoogle Scholar
  14. 7a.
    H. Chate’, P. Manneville, Europhysics Letters 6, 591(1988);ADSCrossRefGoogle Scholar
  15. 7b.
    H. Chate’, P. Manneville, Physica D 32, 409 (1988)MathSciNetADSCrossRefGoogle Scholar
  16. 8.
    H. Chate’, B. Nicolaenko, to be published in the proceedings of the conference: “New trends in nonlinear dynamics and pattern forming phenomena”, Cargese 1988;Google Scholar
  17. 9.
    B. Nicolaenko, in “The Physics of Chaos and Systems Far From Equilibrium”, M. Duong-Van and B. Nicolaenko, eds. (Nuclear Physics B, proceedings supplement 1988).Google Scholar
  18. 10.
    Y. Pomeau, A. Pumir and P. Pelce’, J. Stat. Phys. 37, 39 (1984)MathSciNetADSCrossRefGoogle Scholar
  19. 11.
    A. Pumir, J. de Physique 46,511 (1985).MathSciNetCrossRefGoogle Scholar
  20. 12.
    S. Zalensky, Physica 34 D, 427 (1989).ADSGoogle Scholar
  21. 13.
    F. Bagnoli, S. Ciliberto, A. Francescato, R. Livi, S. Ruffo, in “Chaos and complexity”, M. Buiatti, S. Ciliberto, R. Livi, S. Ruffo eds., (World Scientific Singapore 1988);Google Scholar
  22. 13a.
    F. Bagnoli, S. Ciliberto, A. Francescato, R. Livi, S. Ruffo, in the proceedings of the school on Cellular Automata, Les Houches (1989).Google Scholar
  23. 14.
    M. Van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982);Google Scholar
  24. 14a.
    D. J. Tritton, Physical Fluid Dynamics (Van Nostrand Reinold, New York, 1979), Chaps.19–22Google Scholar
  25. 15.
    S. Ciliberto, P. Bigazzi, Phys.Rev.Lett. 60, 286 (1988).ADSCrossRefGoogle Scholar
  26. 16.
    F. Daviaud, M. Dubois, P. Berg, Europhysics Lett. 9, 441 (1989);ADSCrossRefGoogle Scholar
  27. 16a.
    P. Berg, in “The Physics of Chaos and System Far From Equilibrium”, M. Duong-van and B. Nicolaenko, eds. (Nuclear Physics B, proceedings supplement 1988).Google Scholar
  28. 17.
    P. Kolodner, A. Passner, C. M. Surko, R. W. Waiden, Phys. Rev. Lett. 56, 2621 (1986);ADSCrossRefGoogle Scholar
  29. 17a.
    A. Pocheau Jour. de Phys. 49, 1127 (1988)I;Google Scholar
  30. 17b.
    I. Rehberg, S. Rasenat, J. Finberg, L. de la Torre Juarez Phys. Rev. Lett. 61, 2449 (1988);ADSCrossRefGoogle Scholar
  31. 17c.
    N. B. Trufillaro, R. Ramshankar, J. P. Gollub Phys. Rev. Lett. 62, 422 (1989);ADSCrossRefGoogle Scholar
  32. 17d.
    V. Croquette, H. Williams Physica 37 D, 300 (1989).ADSGoogle Scholar
  33. 18.
    S. Chandrasekar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford 1961;Google Scholar
  34. 18a.
    F. H. Busse, Rep. Prog. Phys. 41 (1978) 1929;ADSCrossRefGoogle Scholar
  35. 18b.
    Ch. Normand, Y. Pomeau, M. Velarde Rev. Mod. Phys. 49, 581, (1977).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. Ciliberto
    • 1
  1. 1.Istituto Nazionale OtticaFirenzeItaly

Personalised recommendations