Skip to main content

Statistical Properties of the Transition to Spatiotemporal Chaos

  • Chapter
Microscopic Aspects of Nonlinearity in Condensed Matter

Part of the book series: NATO ASI Series ((NSSB,volume 264))

  • 143 Accesses

Abstract

It is nowaday well established, both theoretically and experimentally, that the chaotic time evolution observed in many natural phenomena may be produced by the non-linear interaction of a small number of degrees of freedom1 In spatially extended systems low dimensional chaos is often associated with relevant spatial effects, such as mode competition, travelling waves, localized oscillations2, but the unpredictable time evolution does not influence the spatial order, that is to say the correlation length is comparable with the size of the system. However an extended system may present a chaotic evolution both in space and time that, instead, implies the presence of many degrees of freedom3. The study of the transition from low dimensional chaos to spatiotemporal chaos is a subject of current interest that is not jet completely understood. For example it is important to investigate whether there are general features that are independent of the specific system under study and whether a thermodynamic description may be appropriate3,4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a general review of low dimensional chaos see for example: J. P. Eckmann, D. Ruelle, Rev. Mod. Phys. 1987; P. Berge, Y. Pomeau, Ch. Vidal, L’Ordre dans le Chaos (Hermann, Paris 1984).

    MATH  Google Scholar 

  2. A. Libchaber, C. Laroche, S. Fauve, J. Physique Lett. 43, 221, (1982);

    Article  Google Scholar 

  3. M. Giglio, S. Musazzi, U. Perini, Phys. Rev. Lett. 53, 2402 (1984);

    Article  ADS  Google Scholar 

  4. M. Dubois, M. Rubio, P. Berge, Phys. Rev. Lett. 51, 1446 (1983);

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Ciliberto, M. A. Rubio, Phys. Rev. Lett. 58, 25 (1987);

    Article  Google Scholar 

  6. S. Ciliberto, J. P. Gollub, J. Fluid Mech. 158, 381 (1984);

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Ciliberto, Europhysics Letters 4, 685 (1987).

    Article  ADS  Google Scholar 

  8. P.C. Hohenberg, B.Shraiman, Physica 37D, 109 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Ciliberto, M. Caponeri, Phys. Rev. Lett. 64, 2775 (1990).

    Article  ADS  Google Scholar 

  10. G. L. Oppo, R. Kapral Phys. Rev. A 3, 4219 (1986).

    Article  ADS  Google Scholar 

  11. K. Kaneko, Prog. Theor. Phys. 74, 1033 (1985);

    Article  ADS  MATH  Google Scholar 

  12. J. Crutchfield K. Kaneko in “Direction in Chaos”, B. L. Hao (World Scientific Singapore 1987); R. Lima, Bunimovich preprint.

    Google Scholar 

  13. H. Chate’, P. Manneville, Phys. Rev. Lett. 54, 112 (1987);

    Article  ADS  Google Scholar 

  14. H. Chate’, P. Manneville, Europhysics Letters 6, 591(1988);

    Article  ADS  Google Scholar 

  15. H. Chate’, P. Manneville, Physica D 32, 409 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Chate’, B. Nicolaenko, to be published in the proceedings of the conference: “New trends in nonlinear dynamics and pattern forming phenomena”, Cargese 1988;

    Google Scholar 

  17. B. Nicolaenko, in “The Physics of Chaos and Systems Far From Equilibrium”, M. Duong-Van and B. Nicolaenko, eds. (Nuclear Physics B, proceedings supplement 1988).

    Google Scholar 

  18. Y. Pomeau, A. Pumir and P. Pelce’, J. Stat. Phys. 37, 39 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Pumir, J. de Physique 46,511 (1985).

    Article  MathSciNet  Google Scholar 

  20. S. Zalensky, Physica 34 D, 427 (1989).

    ADS  Google Scholar 

  21. F. Bagnoli, S. Ciliberto, A. Francescato, R. Livi, S. Ruffo, in “Chaos and complexity”, M. Buiatti, S. Ciliberto, R. Livi, S. Ruffo eds., (World Scientific Singapore 1988);

    Google Scholar 

  22. F. Bagnoli, S. Ciliberto, A. Francescato, R. Livi, S. Ruffo, in the proceedings of the school on Cellular Automata, Les Houches (1989).

    Google Scholar 

  23. M. Van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982);

    Google Scholar 

  24. D. J. Tritton, Physical Fluid Dynamics (Van Nostrand Reinold, New York, 1979), Chaps.19–22

    Google Scholar 

  25. S. Ciliberto, P. Bigazzi, Phys.Rev.Lett. 60, 286 (1988).

    Article  ADS  Google Scholar 

  26. F. Daviaud, M. Dubois, P. Berg, Europhysics Lett. 9, 441 (1989);

    Article  ADS  Google Scholar 

  27. P. Berg, in “The Physics of Chaos and System Far From Equilibrium”, M. Duong-van and B. Nicolaenko, eds. (Nuclear Physics B, proceedings supplement 1988).

    Google Scholar 

  28. P. Kolodner, A. Passner, C. M. Surko, R. W. Waiden, Phys. Rev. Lett. 56, 2621 (1986);

    Article  ADS  Google Scholar 

  29. A. Pocheau Jour. de Phys. 49, 1127 (1988)I;

    Google Scholar 

  30. I. Rehberg, S. Rasenat, J. Finberg, L. de la Torre Juarez Phys. Rev. Lett. 61, 2449 (1988);

    Article  ADS  Google Scholar 

  31. N. B. Trufillaro, R. Ramshankar, J. P. Gollub Phys. Rev. Lett. 62, 422 (1989);

    Article  ADS  Google Scholar 

  32. V. Croquette, H. Williams Physica 37 D, 300 (1989).

    ADS  Google Scholar 

  33. S. Chandrasekar, Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford 1961;

    Google Scholar 

  34. F. H. Busse, Rep. Prog. Phys. 41 (1978) 1929;

    Article  ADS  Google Scholar 

  35. Ch. Normand, Y. Pomeau, M. Velarde Rev. Mod. Phys. 49, 581, (1977).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ciliberto, S. (1991). Statistical Properties of the Transition to Spatiotemporal Chaos. In: Bishop, A.R., Pokrovsky, V.L., Tognetti, V. (eds) Microscopic Aspects of Nonlinearity in Condensed Matter. NATO ASI Series, vol 264. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5961-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5961-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5963-0

  • Online ISBN: 978-1-4684-5961-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics