Double Peak Structure in the Density of States of a Kondo Lattice

  • Maria Marinaro
  • Canio Noce
  • Alfonso Romano
Part of the NATO ASI Series book series (NSSB, volume 264)


The aim of this paper is to present some results in the study of strongly correlated electron systems, which can be useful to clarify some open problems in the analysis of two large classes of physical systems, known as the intermediate valence (IV) and the heavy fermions (HF) systems1.


Fermi Level Heavy Fermion Anderson Model Itinerant Electron Double Peak Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kasuya and T. Saso, eds., “Theory of heavy fermions and valence fluctuations”, Springer, Berlin (1985);Google Scholar
  2. G. Czycholl, Approximate treatments of intermediate valence and heavy fermion model systems, Phys. Rep. 143: 277 (1986);ADSCrossRefGoogle Scholar
  3. P. Schlottmann, Some exact results for dilute mixed-valent and heavy-fermion systems, Phys. Rep. 181: 1 (1989).CrossRefGoogle Scholar
  4. 2.
    F. Marabelli and P. Wachter, Far-infrared properties of intermediate valence and heavy fermion materials, in: “Theoretical and experimental aspects of valence fluctuations and heavy fermions”, L. C. Gupta and S. K. Malik, eds., Plenum, New York (1987).Google Scholar
  5. 3.
    F. Marabelli and P. Wachter, Electronic structure of UPt3: a low energy optical study, J.Magn.Magn.Mat. 62: 287 (1986);ADSCrossRefGoogle Scholar
  6. F. Marabelli and P. Wachter, Electronic structure and magnetic properties of heavy fermions, J.Magn.Magn.Mat. 70: 364 (1987).ADSCrossRefGoogle Scholar
  7. 4.
    P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124: 41 (1961).MathSciNetADSCrossRefGoogle Scholar
  8. 5.
    F. Mancini, M. Marinaro and Y. Nakano, Exact results for the Anderson model in the limit of zero-width conduction band, Physica B 159: 320 (1989)MathSciNetADSCrossRefGoogle Scholar
  9. 5a.
    F. Mancini, M. Marinaro, Y. Nakano, C. Noce and A. Romano, A diagram method for the Anderson model. Limit of zero-width conduction band, NuovoCimentoD 11: 1709 (1989).ADSGoogle Scholar
  10. 6.
    M. Marinaro, C. Noce and A. Romano, Densities of states in the periodic Anderson model, submitted to J. Phys. Condensed Matter (1990).Google Scholar
  11. 7.
    A. M. Tsvelick and P. B. Wiegmann, Exact results in the theory of magnetic alloys, Advan. Phys. 32: 453 (1983).ADSCrossRefGoogle Scholar
  12. 8.
    P. A. Lee, T. M. Rice, J. W. Serene, L. J. Sham and J. W. Wilkins, Theories of heavy-electron systems, Comments Cond. Matt. Phys. 12: 99 (1986).Google Scholar
  13. 9.
    C. Lacroix, Coherence effects in the Kondo lattice, J.Magn.Magn.Mat. 60: 145 (1986);ADSCrossRefGoogle Scholar
  14. 9A.
    N. Grewe, One particle excitation spectrum of the Kondo lattice, Solid State Commun. 50: 19 (1984)ADSCrossRefGoogle Scholar
  15. 9B.
    H. Schweitzer and G. Czycholl, Second order U-perturbation approach to the Anderson lattice model in high dimensions, Solid State Commun. 69: 171 (1989).ADSCrossRefGoogle Scholar
  16. 10.
    T. Oguchi and A. J. Freeman, Local density band approach to f-electron systems — Heavy fermion superconductor UPt3, J.Magn.Magn.Mat. 52: 174 (1985)ADSCrossRefGoogle Scholar
  17. 10a.
    B. H. Brandow, Variational theory of valence fluctuations: ground states and quasiparticle excitations of the Anderson lattice model, Phys. Rev. B 33: 215 (1986).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Maria Marinaro
    • 1
  • Canio Noce
    • 1
  • Alfonso Romano
    • 1
  1. 1.Dipartimento di Fisica Teorica e S.M.S.A., Unità C.I.S.M e I.N.F.M. di SalernoUniversità di SalernoBaronissi (Salerno)Italy

Personalised recommendations