Dynamics of Tunneling Systems in Metals

  • Ulrich Weiss
  • Maura Sassetti
Part of the NATO ASI Series book series (NSSB, volume 264)


In recent years, it has been observed in a multitude of systems in physical and chemical sciences that quantum tunneling is strongly affected by dissipative influences of the environment. Dissipation was found to cause novel features such as dissipative phase transitions,1 exponential suppression2 and qualitative change of the temperature dependence3 of tunneling rates. Much of the theoretical efforts have been devoted to the phenomenon of macroscopic quantum tunneling (MQT) at T = 0,2 and at finite temperatures,3 and to macroscopic quantum coherence (MQC).4,5 The theoretical predictions for the temperature and damping dependence of MQT have been verified precisely, e.g., in experiments on the decay of the zero-voltage state of a Josephson junction.6


Macroscopic Quantum Tunneling Coherent Tunneling Metallic Environment Functional Integral Method Functional Integral Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chakravarty, “Quantum fluctuations in the tunneling between superconductors”, Phys. Rev. Lett. 49:681 (1982);ADSCrossRefGoogle Scholar
  2. 1a.
    S. Chakravarty A. J. Bray and M. A. Moore, “Influence of dissipation on quantum coherence”, Phys. Rev. Lett. 49:1545 (1982).ADSCrossRefGoogle Scholar
  3. 2.
    A.O. Caldeira and A.J. Leggett, “Quantum tunneling in a dissipative systems”, Ann. Phys. (N.Y.) 149:374 (1983).ADSCrossRefGoogle Scholar
  4. 3.
    H. Grabert, P. Olschowski, and U. Weiss, “Quantum decay rates for dissipative systems at finite temperatures”, Phys. Rev. B 36:1931 (1987), and references therein.ADSCrossRefGoogle Scholar
  5. 4.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system”, Rev. Mod. Phys. 59:1 (1987).ADSCrossRefGoogle Scholar
  6. 5.
    U. Weiss, H. Grabert, and S. Linkwitz, “Influence of friction and temperature on coherent quantum tunneling”, J. Low. Temp. Phys. 68:213 (1987).ADSCrossRefGoogle Scholar
  7. 6.
    A. N. Cleland, J.M. Martinis, and J. Clarke, “Measurements of the effect of moderate dissipation on macroscopic quantum tunneling”, Phys. Rev. B 37:5950 (1988), and references therein.ADSCrossRefGoogle Scholar
  8. 7.
    J. Kondo, “Two-level systems in metals”, in “Fermi Surface Effects”, Vol. 77:1 of Springer Series in Solid-State Sciences, edited by J. Kondo and A. Yoshimori (Springer-Verlag, Berlin) (1988).CrossRefGoogle Scholar
  9. 8.
    U. Weiss and M. Wollensak, “Dynamics of the dissipative multiwell system”, Phys. Rev. B 37:2729 (1988).ADSCrossRefGoogle Scholar
  10. 9.
    H. Wipf, D. Steinbinder, K. Neumaier, P. Gutsmiedl, A. Magerl, and A.J. Dianoux, “Influence of the electronic state on H tunneling in niobium”, Europhys. Lett. 4:1379 (1987);ADSCrossRefGoogle Scholar
  11. 9a.
    D. Steinbinder, H. Wipf, A. Magerl, A.J. Dianoux, and K. Neumaier, “Non adiabatic low-temperature quantum diffusion of hydrogen in Nb(OH) x Europhys. Lett. 6:535 (1988).ADSCrossRefGoogle Scholar
  12. 10.
    U. Weiss, H. Grabert, P. Hänggi, and P. Riseborough, “Incoherent tunneling in a double well”, Phys. Rev. B 35:9535 (1987).ADSCrossRefGoogle Scholar
  13. 11.
    F. Guinea, V. Hakim, and A. Muramatsu, “Bosonization of a two-level system with dissipation”, Phys. Rev. B 32:4410 (1985).ADSCrossRefGoogle Scholar
  14. 12.
    A.M. Tsvelick and P.B. Wiegmann, “Exact results in the theory of magnetic alloys”, Adv. Phys. 32:453 (1983).ADSCrossRefGoogle Scholar
  15. 13.
    M. Sassetti and U. Weiss, “Correlation functions for dissipative two-state systems: effects of the initial preparation”, Phys. Rev. A 41:5383 (1990).ADSCrossRefGoogle Scholar
  16. 14.
    H. Grabert, S. Linkwitz, S. Dattagupta, and U. Weiss, “Structure factor for neutron scattering from tunneling systems in metals”, Europhys. Lett. 2:631 (1986).ADSCrossRefGoogle Scholar
  17. 15.
    R.P. Feynman and F.L. Vernon, “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys. (N.Y.) 24:118 (1963).MathSciNetADSCrossRefGoogle Scholar
  18. 16.
    U. Weiss and M. Wollensak, “Dynamics of the biased two-level system in metals”, Phys. Rev. Lett. 62:1663 (1989);ADSCrossRefGoogle Scholar
  19. 16a.
    R. Görlich, M. Sassetti, and U. Weiss, “Low-temperature properties of biased two-level systems: effects of frequency-dependent damping”, Europhys. Lett. 10:507(1989).ADSCrossRefGoogle Scholar
  20. 17.
    S. Dattagupta, H. Grabert, and R. Jung, “The structure factor for neutron scattering from a two-state system in metals”, J. Phys. Cond. Mat. 1:1405 (1989).ADSCrossRefGoogle Scholar
  21. 18.
    H. Shiba, “The Korringa relation for the impurity nuclear spin-lattice relaxation in dilute Kondo alloys”, Progr. Theor. Phys. 54:967 (1975).ADSCrossRefGoogle Scholar
  22. 19.
    R. Görlich and U. Weiss, “Specific heat of the dissipative two-state system”, Phys. Rev. B 38:5245 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Ulrich Weiss
    • 1
  • Maura Sassetti
    • 1
  1. 1.Institut für Theoretische PhysikUniversität StuttgartStuttgart 80Germany

Personalised recommendations