Advertisement

Quantum Ballistic Transport

  • Y. B. Levinson
Part of the NATO ASI Series book series (NSSB, volume 264)

Abstract

Quantum ballistic transport occurs in devices microfabri-cated by lateral patterning of the high-mobility two-dimensional electron gas (2DEG) in a GaAs/AlG-aAs heterojunct i on, A quantum ballistic device (QBD) is a channel1,2 (constriction) or a net of channe3,4,5 with length L shorter than elastic scattering mean free path ℓ (about 10 μm) and width d of the order of Permi wavelegth λF (about 50 nm). The narrow channels are connected with wide contact pads (reservoirs), where the current enters the device and the applied voltage is measured.

Keywords

Reflection Coefficient Density Operator Electron Wave Thermal Reservoir Integral Means 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.J. van Wees, H. van Houten, C.W.J. Beenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Mar el, and C.T. Poxon, Quantized Conductance of Point Contacts in a 2DEG, Phys. Rev. Lett. 60: 848 (1988)ADSCrossRefGoogle Scholar
  2. 2.
    D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.P. Frost, D. G.Hasko, D. C. Peacock, D. A. Ritchie, and G.A. Jones, 1D Transport and the Quantization of the Ballistic Resistance, J. Phys. C. 21: L209 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    M.L. Roukes, A. Schrer, S.J. Alien, Jr., H. G. Craignead, R.M. Ruthen, E.D. Beebe, and J. P. Harbison, Quenching of the Hall Effect in a ID Wire, Phys. Rev. Lett. 59: 3011 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    G. Timo, H. U. Baranger, P. de Vegvar, J.E. Cunningham, R. E. Howard, R. Behringer, and P.M. Mankiewich, Propagation Around a Bend in a Muitichannal Electron Waveguide, Phys. Rev. Lett. 60: 2081 (l988)CrossRefGoogle Scholar
  5. 5.
    Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, K. Murase, K. Ishibashi, and Y. Aoyagi, Nonlocal Quantum Transport in Narrow Mult i branched Electron Waveguide of GaAs-AiGaAs, Solid State Comm. 68: 1051 (l988)CrossRefGoogle Scholar
  6. 6.
    E.N. Economou, and C.V. Soukoulis, State Conductance and Scaling Theory of Localization in ID, Phys, Red, Lett. 46: 618 (l98l)CrossRefGoogle Scholar
  7. 7.
    D. S. Fisher, and P.A. Lee, Relation Between Conductivity and Transmission Matrix, Phys. Rev. B23: 6851 (l98l)MathSciNetGoogle Scholar
  8. 8.
    A.D. Stone, and A. Szafer, What is Measured when you Measure a Resistance The Landauer Formula Revisited, IBM, J. Res. Dev. 23: 384 (1988)Google Scholar
  9. 9.
    H.U. Baranger, A.D. Stone, Electrical Linear-Response Theory in a Arbitrary Magnetic Field: A New Fermi-Surface Formulation, Phys. Rev. B40: 8169 (l989)Google Scholar
  10. 10.
    Y.B. Levinson, Potential Distribution in a Quantum Point Contact, Sov. Phys, JETP 68(6): 1257 (l989)Google Scholar
  11. 11.
    M. Buttiker, Symmetry of Elecrtical Conduction, IBM J. Res. Dev. 32: 317 (l988)CrossRefGoogle Scholar
  12. 12.
    R. Landauer, Spatial Variation of Currents and Fields due to Localized Scatterers in Metallic Conduction, IBM J. Res. Dev. 32: 306 (l988)CrossRefGoogle Scholar
  13. 13.
    H. L. Enqguist, and P.W. Anderson, Definition and Measurement of the Electrical and Thermal Resistance, Phys. Rev. B 24: 1151 (l98l)CrossRefGoogle Scholar
  14. 14.
    M. Buttiker, Chemical Potential Oscillations near a Barrier in the Presence of Transport, Phys. Rev. B 40: 3409 (l989)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Y. B. Levinson
    • 1
  1. 1.Institute of Microelectronics Technology and High, Purity MaterialsUSSR Academy of SciencesMoscow DistrictUSSR

Personalised recommendations