Advertisement

Computer Simulation of Tunneling in Atomic-Size Devices

  • H. De Raedt
Part of the NATO ASI Series book series (NSSB, volume 264)

Abstract

Electrons emitted from small atomic-size sources exhibit properties that differ substantially from those emitted by conventional sources. Experimental work on electron field emission from one and three-atom tungsten tips has shown that the low-energy electron beam is strongly focussed.1–4 Electron sources having these properties would be very valuable for applications to electron holography and electron interferometry.5–9

Keywords

Tilt Angle Transmission Coefficient Tunnel Barrier Electron Field Emission Gaussian Wave Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H-W. Fink, IBM J. of Research and Development 30, 460 (1986).CrossRefGoogle Scholar
  2. 2.
    H-W. Fink, Physica Scripta 38, 260 (1988).MathSciNetADSCrossRefGoogle Scholar
  3. 3.
    Vu Thien Binh, Surface Science 202, L539 (1988).CrossRefGoogle Scholar
  4. 4.
    Vu Thien Binh, J. Microscopy 152, 355 (1988).CrossRefGoogle Scholar
  5. 5.
    D. Gabor, Proc. Roy. Soc. London A454, 197 (1949).Google Scholar
  6. 6.
    D. Gabor, Proc. Roy. Soc. London B64, 449, (1951).Google Scholar
  7. 7.
    A. Tonomura, Rev. Mod. Phys. 59, 639 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    H. Lichte, Ultramicroscopy 20, 293 (1986).CrossRefGoogle Scholar
  9. 9.
    F.G. Missiroli, G. Pozzi, and U. Valdre, J. Phys. E 14, 649 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    S. Washburn, Nature 343, 415 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    B.J. van Wees et al, Phys. Rev. Lett. 60, 848 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    D.A. Wharam et al, J. Phys. C 21, L209 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    H. De Raedt, Comp. Phys. Rep. 7, 1 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    H. De Raedt, and B. De Raedt, Phys. Rev. A. 28, 3575 (1983).MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    M. Suzuki, J. Math. Phys. (NY) 26, 601 (1986).ADSCrossRefGoogle Scholar
  16. 16.
    N. Garcia, J.J. Sáenz, and H. De Raedt, J. Phys., Condens. Matter 1, 9931 (1989).ADSCrossRefGoogle Scholar
  17. 17.
    H. De Raedt, N. Garcia, and J.J. Sáenz, Phys. Rev. Lett. 63, 2260 (1989).ADSCrossRefGoogle Scholar
  18. 18.
    H. De Raedt, N. Garcia, and J. Huyghebaert, Solid State Comm. (in press).Google Scholar
  19. 19.
    M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739 (1982).ADSCrossRefGoogle Scholar
  20. 20.
    CR. Leavens and G.C. Aers, Phys. Rev. B 39, 1202 (1989).ADSCrossRefGoogle Scholar
  21. 21.
    E.H. Hauge and J.A. St0vneng, Rev. Mod. Phys. 61, 917 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    In this paragraph we use the term “time” in the same sense as BL.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. De Raedt
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of GroningenGroningenThe Netherlands

Personalised recommendations