Oscillations Due to Many-Body Effects in Resonant Tunneling

  • F. Capasso
  • G. Jona-Lasinio
  • C. Presilla
Part of the NATO ASI Series book series (NSSB, volume 264)


We analyze the dynamical evolution of the resonant tunneling of a cloud of electrons through a double barrier in the presence of the self-consistent potential created by the charge accumulation in the well. The intrinsic nonlinearity of the transmission process is shown to lead to oscillations of the stored charge and of the transmitted and reflected fluxes.


Electron Cloud Energy Spread Resonant Tunneling Charge Accumulation Trap Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review on resonant tunneling through double barriers, the reader is referred to Physics of Quantum Electron Devices, F. Capasso, ed., Spinger-Verlag, New York, Heidelberg (1990).Google Scholar
  2. 2.
    M. Tsuchiya, T. Matsusue and H. Sakaki, Tunneling escape rate of electrons from quantum well in double barrier heterostructures, Phys. Rev. Lett. 59, 2356 (1987)ADSCrossRefGoogle Scholar
  3. 2a.
    J. F. Young, B. M. Wood, G. C. Aers, R. L. S. Devine, H. C. Liu, D. Landheer, M. Buchanan, A. S. Springthorpe and P. Mandeville, Determination of charge accumulation and its characteristic time in double barrier resonant tunneling structures using steady-state photoluminescence, Phys. Rev. Lett. 60, 2085 (1988)ADSCrossRefGoogle Scholar
  4. 2b.
    V. S. Goldman, D. C. Tsui and J. E. Cunningham, Resonant tunneling in magnetic fields: evidence for space-charge buildup, Phys. Rev. B 35, 9387 (1987).ADSCrossRefGoogle Scholar
  5. 3.
    B. Ricco and M. Ya. Azbel, Physics of resonant tunneling. The one dimensional double barrier case, Phys. Rev. B 29, 1970 (1984).ADSCrossRefGoogle Scholar
  6. 4.
    C. Presilla, G. Jona-Lasinio and F. Capasso, Nonlinear feedback oscillations in resonant tunneling through double barriers, Phys. Rev. B (Rapid Comm.) in press.Google Scholar
  7. 5.
    H. Spohn, Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys. 53, 569 (1980).Google Scholar
  8. 6.
    W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling, Numerica] Recipes: the Art of Scientific Computing (Cambridge University Press, Cambridge 1986).Google Scholar
  9. 7.
    C. Presilla, G. Jona-Lasinio and F. Capasso, Dynamical analysis of resonant tunneling in presence of a self consistent potential due to the space charge, in Resonant Tunneling in Semiconductors: Physics and Applications, L. L. Chang, E. E. Mendez and C. Tejedor Ed.s (Plenum Press, New York 1990).Google Scholar
  10. 8.
    S. Collins, D. Lowe and J. R. Barker, A dynamic analysis of resonant tunneling, J. Phys. C 20, 6233 (1987).ADSCrossRefGoogle Scholar
  11. 9.
    M. Heiblum, M. J. Nathan, D. C. Thomas and C. M. Knoedler, Direct observation of ballistic transport in GaAs, Phys. Rev. Lett. 55, 2200 (1985).ADSCrossRefGoogle Scholar
  12. 10.
    J. F. Whitaker, G. A. Mourou, T. C. L. G. Sollner and W. D. Goodhue, Picosecond switching time measurement of a resonant tunneling diode, Appl. Phys. Lett. 53, 385 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. Capasso
    • 1
  • G. Jona-Lasinio
    • 2
  • C. Presilla
    • 2
    • 3
  1. 1.AT&T Bell LaboratoriesMurray HillUSA
  2. 2.Dipartimento di Fisica dell’ Universitá “La Sapienza”RomaItaly
  3. 3.Dipartimento di Fisica dell’ UniversitáPerugiaItaly

Personalised recommendations