Advertisement

Solitons in Charge Density Wave Crystals

  • S. Brazovskii
  • S. Matveenko
Part of the NATO ASI Series book series (NSSB, volume 264)

Abstract

Electronic properties of quasi onedimensional conductors with charge density waves (CDW) are peculiar for two reasons. First is related to translational degeneracy of CDW ground state which leads to the phenomena of Fröhlich conductivity1,2. It shows itself in a giant dielectric susceptibility, in nonlinear and nonstationary effects (see proceedings and the reviews3–7). The second reason is related to a strong interaction of CDW deformations with normal electrons, which leads to their fast selftrapping in the course of conversion to various kinds of solitons89. Extensive experimental studies are devoted to the Frölich conductivity (see reviews by Fleming, Gill, Grüner, Jerome, Nad’, Ong, Schlenker et all3–6). At the same time physics of solitons is mainly studied at another substance — polyacetylene1011, where effects of CDW sliding are absent for the case of two-fold commensurability.

Keywords

Charge Density Wave Amplitude Soliton Exponentional Attraction Extensive Experimental Study Topological Soliton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Fröhlich, Proc. Roy. Sos., 1954, A223, 292.ADSGoogle Scholar
  2. 2.
    RA. Lee, T.M. Rice and P.V. Anderson, 1975, Solid State Commun., 17, 1089.CrossRefGoogle Scholar
  3. 3.
    Electronic properties of quasi one-dimensional compounds, ed. P. Monceau, Rei-del Publ. Co, 1985.Google Scholar
  4. 4.
    Low dimensional Conductors and Superconductors, ed.D. Jerome & L. G. Caron NATO ASI Series B : Physics-Vol. 155. Plenum Publ. Co., New York, 1987.Google Scholar
  5. 5.
    Low dimensional electronic properties of molybdenum bronzes and oxides (ed. C. Schlenker).Reidel Publ. Co. 1989.Google Scholar
  6. 6.
    Charge Density Waves in Solids, ed. L. Gor’kov & G. Grüner, Elsvier Sci. Publ., Amsterdam, 1990.Google Scholar
  7. 7.
    G. E. Grüner, & A. Zettl, Phys. Reports, 1985, 119, 117.ADSCrossRefGoogle Scholar
  8. 8.
    S. Brazovskii, and N. Kirova, 1984, Electron Selflocalization and Periodic Superstructures in Quasi One Dimensional Dielectrics., in: Soviet Scientific Reviews, sec.A: Physics, 6, ed. I.M. Khalatnikov. (Harwood Academic Publishers).Google Scholar
  9. 9.
    S. Brazovskii, Charge Density Waves in Solids, ed. L. Gor’kov, & G. Grüner, Eisvier Sci. Publ., Amsterdam, 1990.Google Scholar
  10. 10.
    Yu Lu, Solitons and Polarons in Conducting Polymers. World Scientific Publ. Co., 1988.Google Scholar
  11. 11.
    A. J. Heeger, S. Kivelson, J. R. Schrieffer, W. P. Su. 1989, Rev. Mod. Phys.Google Scholar
  12. 12.
    C. Schlenker, J. Dumas, C. Escribe-Filippini, M. Boujida. 1990, Physica Scripta (to be published).Google Scholar
  13. 13.
    S. Brazovskii. 1978, Pis’ma Zh. Exp. Teor. Fis., 28, 677 (Sov. Phys. JETP Lett., 28, 606).Google Scholar
  14. 14.
    S. Brazovskii. 1980, Zh. Exp. Teor. Fis., 78, 677 (Sov. Phys. JETP, 51, 342.)MathSciNetGoogle Scholar
  15. 15.
    S. Brazovskii, and S. Matveenko. 1984, Zh. Exp. Teor. Fis., 87, 1400 (Sov. Phys. JETP, 60, 804).ADSGoogle Scholar
  16. 16.
    S. Brazovskii, N. Kirova and V. Yakovenko, 1983, Journal de Physique, Suppl., Colloque C3, 44, C3–1525.Google Scholar
  17. 17.
    T. Bohr, S. Brazovskii. 1983, J. Phys. C, 16, 1189.ADSCrossRefGoogle Scholar
  18. 18.
    D. Baeriswyl, K. Maki. Phys. Rev., 1983, B28, 2068.Google Scholar
  19. 19.
    S. Brazovskii, S. Matveenko. Zh. Exp. Theor. Phys., 1990; J. de Physique. 1990, to be published.Google Scholar
  20. 20.
    J. C. Gill. Europhysics Lett., 1990.Google Scholar
  21. 21.
    S. Barisic, I. Batistic. J. de Physique, 1989, 50, 2717.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. Brazovskii
    • 1
  • S. Matveenko
    • 1
  1. 1.L.D.Landau Institute for Theoretical PhysicsMoscowUSSR

Personalised recommendations