Space Time Complexity in Quantum Optics

  • F. T. Arecchi
Part of the NATO ASI Series book series (NSSB, volume 264)

Abstract

Two recent experiments in quantum optics, namely, i) a waveguide laser supporting many transverse modes, and ii) an optical cavity with a photorefractive gain medium and a variable aperture have displayed controllable routes to space complexity. This fills the gap between the single mode dynamics and the many domain turbulent-like behavior, which so far was unreachable for a radiation field. Due to the high accuracy of optical measurements, we foresee a precise way to test many conjectures formulated for fluids or other nonlinear field problems. Thus we have called this new research area “dry hydrodynamics”.

In particular I show the first experimental evidence of two phenomena, recently described theoretically, namely:
  1. i)

    chaotic itinerancy = self induced switching among different slow manifolds

     
  2. ii)

    Space-Time Chaos (STC) = high dimensional chaos, with strongly non Gaussian statistics in real space, but with a Gaussian spectral statistics, up to a critical wave number given by the reciprocal of the correlation length.

     

Keywords

Vortex Convection Manifold Argon Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Von Neumann, Theory of self-reproducing automata, ed. by A. W. Burks, University of Illinois Press, 1966.Google Scholar
  2. 2.a.
    F.T. Arecchi, in Quantum Optics ed. by R. J. Glauber, (Academic Press, New York, 1969), p. 57,Google Scholar
  3. 2b.
    F.T. Arecchi in Order and fluctuations in equilibrium and non equilibrium statistical mechanics, Proc. XVII Int. Solvay Conference on Physics edited by G. Nicolis, G. Dewel and J.V. Turner, (J. Wiley, 1981), p. 107.Google Scholar
  4. 3.
    For a review of these phenomena, as well as for a critical discussion on such a term, see the Proc. of the XVII Solvay Conference on Physics, referred to in Ref. 2b).Google Scholar
  5. 4.
    P.W. Anderson, Science, 177, 393 (1972).ADSCrossRefGoogle Scholar
  6. 5.
    A.L. Schawlow and C.H. Townes, Phys Rev. 112, 1940 (1958).ADSCrossRefGoogle Scholar
  7. 6.
    See the reference to the work of M. Von Laue in: A. Sommerfeld, Optics, (Academic Press, New York 1954), p. 194.Google Scholar
  8. 7.
    F.T. Arecchi, Phys. Rev. Lett. 24, 912 (1965).ADSCrossRefGoogle Scholar
  9. 8.
    P.C. Hohenberg and B.I. Shraiman, Physica D37, 109 (1989)MathSciNetADSGoogle Scholar
  10. 9.
    For a review, see F.T. Arecchi in F.T. Arecchi and R.G. Harrison, eds., Instabilitis and Chaos in Quantum Optics, (Springer 1987), p. 9.CrossRefGoogle Scholar
  11. 10.
    J. Fleck, Phys. Rev. Lett. 21, 131 (1968).ADSCrossRefGoogle Scholar
  12. 11.
    In solid state lasers, reports on random spiking go back to the first ruby laser, cfr: T. Maiman, Nature 187, 463 (1967) and Phys. Rev. 123, 1145 (1961).Google Scholar
  13. 11a.
    In gas lasers, evidence of random mode locking was given by: A.G. Fox and P.W. Smith, Phys. Rev. Lett. 18, 826 (1967).ADSCrossRefGoogle Scholar
  14. 12.
    V. Degiorgio and M.O. Scully, Phys. Rev. A2, 1170 (1970).ADSGoogle Scholar
  15. 13.
    H. Risken and K. Nummedal, J. Appl. Phys. 39, 4662 (1968).ADSCrossRefGoogle Scholar
  16. 14.
    R. Graham and H. Haken, Z. Phys. 237, 31 (1970).MathSciNetADSCrossRefGoogle Scholar
  17. 15.
    H. Haken, Phys. Lett. 53A, 77 (1975).ADSGoogle Scholar
  18. 16.
    K. Ikeda, K. Otsuka and K. Matsumoto, Progr. Theor. Phys. Supplement N. 99, 295 (1989);MathSciNetADSCrossRefGoogle Scholar
  19. 16.
    a. K. Otsuka, Phys. Rev. Lett. 65, 329 (1990).ADSCrossRefGoogle Scholar
  20. 17.
    J.V. Moloney, F.A. Hopf and H.M. Gibbs, Phys. Rev. A25, 3442 (1982);ADSGoogle Scholar
  21. 17.
    a. D.W. Laughlin, J.V. Moloney and A.C. Newell, Phys. Rev. Lett. 51, 75 (1983).ADSCrossRefGoogle Scholar
  22. 18.
    W. J. Firth and E.M. Wright, Phys. Lett. 92A, 211 (1982).ADSGoogle Scholar
  23. 19.
    L.D. Landau and V.L. Ginzburg, On the theory of Superconductivity, in Collected papers of L.D. Landau ed. D. Terhaar, (Pergamon Press 1965), p. 217.Google Scholar
  24. 20.
    C.R. Doering, J.D. Gibbon, D. Holm and B. Nicolaenko, Nonlinearity 1, 279 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  25. 21.
    P. Constantin, C. Foias and R. Temam, Physica D30, 284 (1988).MathSciNetADSGoogle Scholar
  26. 22.
    B.I. Shraiman, Phys. Rev. Lett. 57, 325 (1987).ADSCrossRefGoogle Scholar
  27. 23.
    L.A. Lugiato, G.L. Oppo, J.R. Tredicce, L.M. Narducci, and M.A. Pernigo, Journ. Opt. Soc. Am. B 7, 1019 (1990); G.L. Oppo (unpublished).ADSGoogle Scholar
  28. 24.
    P. Coullet, L. Gil and F. Rocca, Opt. Comm., 73, 403 (1985).ADSCrossRefGoogle Scholar
  29. 25.
    M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C. Tamm and C.O. Weiss, “Transverse Laser Patterns I. Phase Singularity Crystals” and M. Brambilla, L.A. Lugiato, V. Penna, F. Prati, C. Tamm and C.O. Weiss, “Transverse Laser Patterns II. Variational Principle for Pattern-Selection, Spatial Multistability, Laser Hydrodynamics” submitted to Phys. Rev. A.Google Scholar
  30. 26.
    C. Tamm, Phys. Rev. A38, 5960 (1988).ADSGoogle Scholar
  31. 27.
    K. Otsuka and K. Ikeda, Global chaos in a discrete time-dependent CGL Equation, Preprint 1990.Google Scholar
  32. 28.
    M. Bartucelli, P. Constantin, C.R. Doering, J.D. Gibbs and M. Gisselfalt, Physica D44, 421 (1990).ADSGoogle Scholar
  33. 29.
    F.T. Arecchi, R. Meucci and L. Pezzati, Phys. Rev. A42, 5791 (1990).ADSGoogle Scholar
  34. 30.
    M. Born and E. Wolf, Principles of Optics, Pergamon, Oxford 1980.Google Scholar
  35. 31.
    F.T. Arecchi, G. Giacomelli, P.L. Ramazza and S. Residori, Phys. Rev. Lett. 65, 2531 (1990).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • F. T. Arecchi
    • 1
    • 2
  1. 1.Dept. of Physics of the UniversityFlorenceItaly
  2. 2.Istituto Nazionale di OtticaFlorenceItaly

Personalised recommendations