Polluted Heterogeneous Environments: Macro-scale Fluxes, Micro-scale Mechanisms, and Molecular Scale Control

  • Geoffrey Hamer
  • Armin Heitzer
Part of the Environmental Science Research book series (ESRH, volume 41)


Most large-scale processing ventures are initiated by ill-defined statements of need rather than by the discovery of either a new product or a novel process route. One of the best examples that has been contrary to this general pattern during the past decade has been the dramatic development of biotechnology, where one has seen both products and processes emerging as a result of research push rather than market pull. In contrast to this, environmental biotechnology is developing in response to a perceived need; the clean-up of indiscriminate pollution that has occurred from the advent of the industrial revolution until relatively recent times. With increasing public awareness and sensitivity to the crises that either have or will develop with respect to enviromental safety, health and quality, it is only now that politico-economic policies are being implemented that allow the development of technological responses to such crises. Newly evolving bioremediation and biorestoration technologies for soil and ground water clean-up, respectively, represent only one response scenario. Their future will depend on both their efficacy and their economics. Unless they continue to offer clear advantages on both counts, they will rapidly become obsolete. The maintenance of their relative attractiveness depends on the effectiveness and availability of underpinning fundamental research and its exploitation in solving practical problems.


Specific Growth Rate Dilution Rate Heat Shock Response Chemostat Culture Activate Sludge Waste 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bazin, M.J., Saunders, P.T., and Prosser, J.I., 1976, Models of microbial interactions in soil, Crit. Rev. Microbiol. 4:463.CrossRefGoogle Scholar
  2. Bull, A.T., and Quayle, J.R., 1982, New dimensions in microbiology: an introduction, Phil. Trans. R. Soc. Lond. B 197:447.CrossRefGoogle Scholar
  3. Bull, A.T., and Slater, J.H., 1982, Microbial interactions and community structure, in: Microbial Interactions and Communities, (A.T. Bull and J.H. Slater, eds.), Vol. I, Academic Press, London, pp. 13–44.Google Scholar
  4. Bungay, H.R., and Bungay, M.L., 1968, Microbial interactions in continuous culture, Adv. Appl. Microbiol. 10: 269.PubMedCrossRefGoogle Scholar
  5. Burns, R.G., 1980, Microbial adhesion to soil surfaces: consequences for growth and enzyme activities in: Microbial Adhesion to Surfaces, (R.C.W. Berkeley, J.M. Lynch, J. Melling, P.R. Rutter and B. Vincent, eds.), SCI/Ellis Horwood, Chichester, pp 249–262.Google Scholar
  6. de Bont, J.A.M., 1976, Nitrogen fixation by methane-utilizing bacteria, Antonie van Leeuwenhoek 42: 245.PubMedCrossRefGoogle Scholar
  7. de Bont, J.A.M., and Mulder, E.G., 1974, Nitrogen fixation and co-oxidation of ethylene by a methane-utilizing bacterium, J. Gen. Microbiol. 83: 113.Google Scholar
  8. Davies, K.J.P., Lloyd, D., and Boddy, L., 1989, The effect of oxygen on denitrification in Paracoccus denitrificans and Pseudomonas aeruginosa, J. Gen. Microbiol. 135: 2445.PubMedGoogle Scholar
  9. Davis, J.B., Coty, V.F., and Stanley, J.P., 1964, Atmospheric nitrogen fixation by methane-oxidizing bacteria, J. Bacteriol. 88: 468.PubMedGoogle Scholar
  10. Dawes, E.A., 1984, Stress of unbalanced growth and starvation in microorganisms, in: The Revival of Injured Microbes, (M.H.E. Andrew and A.D. Russel, eds.), Academic Press, London, pp. 19–43.Google Scholar
  11. Egli, T., and Schmidt, C.R., 1990, Dual-nutrient-limited growth of microbes, with special reference to carbon and nitrogen substrates, in: Mixed and Multiple Substrates and Feedstocks, (G. Hamer, T. Egli and M. Snozzi, eds.), Hartung-Gorre-Verlag, Konstanz, pp. 45–53.Google Scholar
  12. Egli, T., Bosshard, C, and Hamer, G., 1986, Simultaneous utilization of methanol-glucose nixtures by Hansenula polymorpha in chemostat: influence of dilution rate and mixture composition on utilization pattern, Biotechnol. Bioengng. 28: 1735.CrossRefGoogle Scholar
  13. Fletcher, M, 1984, Comparative physiology of attached and free living bacteria, in: Microbial Adhesion and Aggregation, (K.C. Marshall, ed.), Springer-Verlag, Berlin, pp. 223–232.CrossRefGoogle Scholar
  14. Gräzer-Lampart, S.D., Egli, T., and Hamer, G., 1986, Growth of Hyphomicrobium ZV620 in the chemostat: regulation of NH4+-assimilating enzymes and cellular composition, J. Gen. Microbiol. 132: 3337.Google Scholar
  15. Griffin, D.M., 1981, Water and microbial stress, Adv. Microb. Ecol. 5: 91.Google Scholar
  16. Griffin, D.M., and Luard, E.J., 1979, Water stress and microbial ecology, in: Strategies of Microbial Life in Extreme Environments, (M. Shilo, ed.), Verlag Chemie, Weinheim, pp. 49–63.Google Scholar
  17. Hamer, G., 1986, Transformation of nitrogen compounds in wastewater treatment systems, in: Perspectives in Microbial Ecology, (M. Megusar and M. Gantar, eds.), Slovene Soc. Microbiol., Ljubljana, pp. 74–79.Google Scholar
  18. Hamer, G., 1990, Immobilized microbes: interfaces, gradients and physiology, in: Physiology of Immobilized Cells, (J.A.M. de Bont, J. Visser, B. Mattiasson and J. Tromper, eds.), Elsevier, Amsterdam, pp. 15–24.Google Scholar
  19. Hamer, G., Egli, T., and Mechsner, K., 1985, Biological treatment of industrial wastewater: a microbiological basis for process performance, J. Appl. Bacteriol. Symp. Suppl. 59 (14): 127.CrossRefGoogle Scholar
  20. Hamer, G., Harrison, D.E.F., Harwood, J.H., and Topiwala, H.H., 1975, SCP production from methane, in: Single-Cell Protein II, (S.R. Tannenbaum and D.I.C. Wang, eds.), MIT Press, Cambridge, pp. 357–369.Google Scholar
  21. Harrison, D.E.F., 1972, Physiological effects of dissolved oxygen tension and redox potential on growing populations of microorganisms, J. Appl. Chem. Biotechnol. 22: 417.CrossRefGoogle Scholar
  22. Hecker, M., Völker, U., and Heim, C, 1989, RelA-independent (p) ppGpp accumulation and heat shock protein induction after salt stress in Bacillus subtilis, FEMS Microbiol. Lett. 58: 125.CrossRefGoogle Scholar
  23. Heitzer, A., 1990, Kinetic and physiological aspects of bacterial growth at superoptimum temperatures, Doctoral Thesis 9217, ETH Zch, pp. 1 - 108.Google Scholar
  24. Herbert, D., 1958, Some principles of continuous culture, in: Recent Progress in Microbiology, (G. Tunevall, ed.), Blackwell, Oxford, pp. 381 - 396.Google Scholar
  25. Heyde, M., and Portalier, R., 1990, Acid shock proteins of Escherichia coli, FEMS Microbiol. Lett. 69: 19.CrossRefGoogle Scholar
  26. Higgins, I.J., Best, D.J., and Hammond, R.C., 1980, New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential, Nature 286: 561.PubMedCrossRefGoogle Scholar
  27. Hirschhorn, J.S., 1988, Superfund strategies and technologies: a role for biotechnology, in: Environmental Biotechnology, (G. S. Omenn, ed.), Plenum Press, New York, pp. 419–429.Google Scholar
  28. Jenkins, D.E., Schultz, J.E., and Matin, A., 1988, Starvation-induced cross protection against heat or H2O2 challenge in Escherichia coli, J. Bacteriol. 170: 3910.PubMedGoogle Scholar
  29. Jones, P.G., Van Bogelen, R.A., and Neidhardt, F.C., 1987, Induction of proteins in response to low temperature in Escherichia coli, J. Bacteriol. 169: 2092.PubMedGoogle Scholar
  30. Kjeldgaard, N. O., Maalo, O., and Schaechter, M., 1958, The transition between different physiological states during balanced growth of Salmonella typhimurium, J. Gen. Microbiol 19: 607.PubMedGoogle Scholar
  31. Koch, A.L. and Wang, C.H., 1982, How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 131: 36.PubMedCrossRefGoogle Scholar
  32. Koch, R., 1881, Zur Untersuchung von pathogenen Organismen, Mitt. Kaiserl. Gesundht Berl. 1:1.Google Scholar
  33. Konstantinov, K., and Yoshida, T., 1989, Physiological state control of fermentation processes, Biotechnol. Bioengng. 33: 1145.CrossRefGoogle Scholar
  34. Kuenen, J.G., and Bos, P., 1989, Habitats and ecological niches of chemolitho(auto)trophic bacteria, in: Autotrophic Bacteria, (H.G. Schlegel and B. Bowien, eds.), Science Tech Publ., Madison/Springer Verlag, Berlin, pp. 53–80.Google Scholar
  35. Lindquist, S., 1986, The heat-shock response, Annu. Rev. Biochem. 55: 1151.PubMedCrossRefGoogle Scholar
  36. Lindquist, S., and Craig, E.A., 1988, The heat shock proteins, Annu. Rev. Genet. 22: 631.PubMedCrossRefGoogle Scholar
  37. Marshall, K.C., 1980, Adsorption of microorganisms to soils and sediments, in: Adsorption of Microorganisms to Surfaces, (G. Bitton and K.C. Marshall, eds.), Wiley, New York, pp. 317–329.Google Scholar
  38. Mason, C.A., Hamer, G. and Bryers, J.D., 1986, The death and lysis of microorganisms in environmental processes, FEMS Microbiol. Rev. 39: 373.CrossRefGoogle Scholar
  39. Matin, A., Auger, E.A., Blum, P.H., and Schultz, J.E., 1989, Genetic basis of starvation survival in non-differentiating bacteria, Annu. Rev. Microbiol 43: 293.PubMedCrossRefGoogle Scholar
  40. McCarthy, J.F., and Zachara, J.M., 1989, Subsurface transport of contaminants, Environ. Sci. Technol. 23: 496.Google Scholar
  41. Neidhardt, F.C., 1987, Multigene systems and regulons, in: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2, (F.C. Neidhardt, ed.), Am. Soc. Microbiol., Washington, pp. 1313–1317.Google Scholar
  42. Neidhardt, F.C, and Van Bogelen, R.A., 1987, Heat shock response, in: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2 (F.C. Neidhardt, ed.) Am. Soc. Microbiol. Washington pp. 1334–1345.Google Scholar
  43. Neidhardt, F.C, Van Bogelen, R.A., and Vaughn, V., 1984, The genetics and regulation of heat shock proteins, Annu. Rev. Genet. 18: 295.PubMedCrossRefGoogle Scholar
  44. Omlin, D., Snozzi, M., and Hamer G., 1990, Transients between oxic and anoxic growth in continuous cultures of Paracoccus denitrificans, Presented at 6th Europ. Bioenergetics Conf., Amsterdam.Google Scholar
  45. Poindexter, J.S., 1981, Oligotrophy, fast and famine existance, Adv. Microbial Ecol. 5: 63.Google Scholar
  46. Raina, S., and Georgopoulos, C, 1990, A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures, J. Bacteriol. 172: 3417.PubMedGoogle Scholar
  47. Robertson, L. A., and Kuenen, J.G., 1984, Anaerobic denitrification - old wine in new bottles? Antonie van Leeuwenhoek 50: 525.PubMedCrossRefGoogle Scholar
  48. Robertson, L.A., and Kuenen, J.C., 1990, Mixed terminal electron acceptors (oxygen and nitrate), in: Mixed and Multiple Substrates and Feedstocks, (G. Hamer, T. Egli and M. Snozzi, eds.), Hartung-Gorre-Verlag, Konstanz, pp. 97–106.Google Scholar
  49. Robertson, L.A., Cornelisse, R., de Vos, P., Hadioetomo, R., and Kuenen, J.G., 1989, Aerobic denitrification in various heterotrophic nitrifiers, Antonie van Leweuwenhoek, 56: 289.CrossRefGoogle Scholar
  50. Rutgers, M., Teixeira de Mattos, M.J., Postma, P.W., and van Dam, K., 1987, Establishment of the steady-state in glucose-limited chemostock cultures of Klebsielle pneumoniae, J. Gen. Microbiol. 133: 445.PubMedGoogle Scholar
  51. Schaechter, M., Maalo, O., and Kjeldgaard, N.O., 1958, dependency on medium and temperature of cell cize and chemical composition during balanced growth of Salmonella typhimurium, J. Gen. Microbiol. 19: 592.PubMedGoogle Scholar
  52. Shehata, T.E., and Marr, A.G., 1971, Effect of nutrient concentration on the growth of Escherichia coli, J.Bacteriol. 107: 210.PubMedGoogle Scholar
  53. Söhngen, N.L., 1905, Ueber Bakterien welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen, Centralbl. f. Bakt. Parasitenk. Infekt. u. Hygiene, Abt. 2, 15: 513.Google Scholar
  54. Spector, M.P., Aliabadi, Z., Gonzalez, T., and Foster, J.W., 1986, global control in Salmonella typhimurium: two-dimensional electrophoretic analusis of starvation-, anaerobiosis- and heat shock - inducible proteins, J. Bacteriol. 168: 420.PubMedGoogle Scholar
  55. Topiwala, H.H., and Hamer, G., 1971, Effect of wall growth in steady-state continuous cultures, Biotechnol. Bioengng. 13: 919.CrossRefGoogle Scholar
  56. Walker, G.C, 1987, the SOS response of Escherichia coli, in: Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2. (F.C. Neidhardt, ed.), Am. Soc. Microbiol., Washington, pp. 1346–1357.Google Scholar
  57. Wanner, O., and Gujer, W., 1986, A multispecies biofilm model, Biotechnol. Bioengng. 28: 314.CrossRefGoogle Scholar
  58. Wanner, U., and Egli, T., 1990, Dynamics of microbial growth and cell composition in batch culture, FEMS Microbiol. Rev. 75: 19.CrossRefGoogle Scholar
  59. Westerhoff, H.V., Lolkema, J.S., Otto, R., and Hellingwerf, K.J., 1982, Thermodynamics of growth, non equilibrium thermodynamics of bacteria growth, the phenomenological and the mosaic approach, Biochim. Biophys. Acta 683: 181.PubMedGoogle Scholar
  60. Wilkinson, T.G., 1972, Interactions in a mixed bacterial population growing on methane in continuous culture, Doctoral Thesis, Univ. of London, pp. 1–233.Google Scholar
  61. Wilkinson, T.G., Topiwala, H.H., and Hamer, G., 1974, Interactions in a mixed bacterial population growing on methane in continuous culture, Biotechnol. Bioengng. 16: 41.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Geoffrey Hamer
    • 1
  • Armin Heitzer
    • 1
  1. 1.Institute of Aquatic Sciences and Water Pollution ControlSwiss Federal Institute of Technology-ZürichDübendorfSwitzerland

Personalised recommendations