Skip to main content

Increased L-Tryptophan, 5-Hydroxyindoleacetic Acid, 3-Hydroxykynurenine and Quinolinic Acid Concentrations in Cerebral Cortex Following Systemic Endotoxin Administration

  • Chapter
Kynurenine and Serotonin Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 294))

Abstract

Systemic infections and administration of lipopolysaccharide (LPS) are known to increase L-tryptophan (L-TRP) release from skeletal muscle, accelerate systemic L-TRP catabolism through the kynurenine pathway (Rapoport et al., 1970; Takikawa et al., 1986), and increase the excretion of L-kynurenine and xanthurenic acid (Rapoport et al., 1970; Takikawa et al., 1986). This increase in kynurenine pathway metabolites may, in part, be secondary to the induction of indoleamine-2, 3-dioxygenase (IDO), the first enzyme in the kynurenine pathway in extrahepatic tissues (Takikawa et al., 1986; Yoshida et al., 1986). Although there are numerous reports on the effects of infection and LPS on systemic L-TRP metabolism, the effects of immunologie stimulation on brain L-TRP metabolism have received little attention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Endo, Y., 1983, Lipopolysaccharide and concanavalin A induce variations of serotonin levels in mouse tissues, Eur. J. Pharmacol., 91: 493–499.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J.D., 1983, Role of precursor availability in control of monoamine biosynthesis in brain, Physiol. Rev., 63: 484–546.

    PubMed  CAS  Google Scholar 

  • Gál, E.M., and Sherman, A.D., 1980, L-kynurenine: its synthesis and possible regulatory function in brain, Neurochem. Res., 5: 223–239.

    Article  PubMed  Google Scholar 

  • Heyes, M.P., Kim, P., and Markey, S.P., 1988, Systemic lipopolysaccharide and pokeweek mitogen increase quinolinic acid concentrations in mouse cerebral cortex, J. Neurochem., 51: 1946–1948.

    Article  PubMed  CAS  Google Scholar 

  • Heyes, M.P., and Markey, S.P., 1988a, [180]-Quinolinic acid: its esterifi-cation without back exchange for use as internal standard in the quantification of brain and CSF quinolinic acid, Biomed. Environ. Mass Spectrum., 15: 291–293.

    Article  CAS  Google Scholar 

  • Heyes, M.P., and Markey, S.P., 1988b, Quantification of quinolinic acid in rat brain, whole blood and serum by gas chromatography and negative chemical ionization mass spectrometry: effects of systemic L-tryptophan administration on brain and blood quinolinic acid concentrations, Anal. Biochem., 174: 349–359.

    Article  PubMed  CAS  Google Scholar 

  • Heyes, M.P., and Quearry, B.J., 1988, Quantification of 3-hydroxykynurenine in brain by high performance liquid chromatography and electrochemical detection, J. Chromat., 428: 340–344.

    Article  CAS  Google Scholar 

  • Heyes, M.P., Rubinow, D., Lane, C., and Markey, S.P., 1989, Cerebrospinal fluid quinolinic acid concentrations are increased in acquired immune deficiency syndrome, Ann. Neurol., 26: 275–277.

    Article  PubMed  CAS  Google Scholar 

  • Lapin, I.P., 1982, Convulsant action of intracerebroventricularly administered L-kynurenine sulphate, quinolinic acid and other derivatives of succinic acid, and effects of amino acids: structure-activity relationships, Neuropharmacology, 21: 1227–1233.

    Article  PubMed  CAS  Google Scholar 

  • Perkins, M.N., and Stone, T.W., 1983, Pharmacology and regional variations of quinolinic acid-evoked excitations in rat central nervous system, J. Pharmacol. Exp. Ther., 226: 551–557.

    PubMed  CAS  Google Scholar 

  • Rapoport, M.I., Beisel, W.R., and Hornick, R.B., 1970, Tryptophan metabolism during infectious illness in man, J. Infect. Dis., 122: 159–169.

    Article  PubMed  CAS  Google Scholar 

  • Schwarcz, R., Whetsell, W.O., and Mangano, R.M., 1983, Quinolinic acid: an endogenous metabolite that produces axon sparing lesions in rat brain, Science, 219: 316–318.

    Article  PubMed  CAS  Google Scholar 

  • Takikawa, O., Yoshida, R., Kido, R., and Hayaishi, O., 1986, Tryptophan degradation in mice initiated by indoleamine-2, 3-dioxygenase, J. Biol. Chem., 261: 3648–3653.

    PubMed  CAS  Google Scholar 

  • Yoshida, R., Oku, T., Imanishi, J., Kishida, T., and Hayaishi, O., 1986, Interferon: a mediator of indoleamine 2,3-dioxygenase induction by lipo-polysaccharide, Poly(I), Poly(C), and pokeweed mitogen in mouse lung, Arch. Biophys., 249: 596–604.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Heyes, M.P., Quearry, B.J. (1991). Increased L-Tryptophan, 5-Hydroxyindoleacetic Acid, 3-Hydroxykynurenine and Quinolinic Acid Concentrations in Cerebral Cortex Following Systemic Endotoxin Administration. In: Schwarcz, R., Young, S.N., Brown, R.R. (eds) Kynurenine and Serotonin Pathways. Advances in Experimental Medicine and Biology, vol 294. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5952-4_66

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5952-4_66

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5954-8

  • Online ISBN: 978-1-4684-5952-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics