Skip to main content

Brain Indole Metabolism Assessed Using in Vivo Dialysis

  • Chapter
Kynurenine and Serotonin Pathways

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 294))

Abstract

The relationships between tryptophan (Trp) and its major CNS metabolites serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) may be studied by analysis of post-mortem tissue or by analyzing concentrations in the extracellular fluid. Major advances in our understanding of the physiological importance of Trp supply to the brain and subsequent 5-HT synthesis and metabolism was derived, in part, from regional brain tissue analysis following e.g. Trp loading, stress, fasting (Fernstrom and Wurtman, 1971; Knott and Curzon, 1974; Curzon and Marsden, 1975). However, tissue analysis does not differentiate between functionally active substrate concentrations available to receptors in the extracellular compartment and intracellular concentrations. Furthermore, as only a single value is obtained from each animal, large numbers of animals are required to obtain temporal profiles of drug action. The primary advantage of in vivo monitoring of extracellular substrate concentrations is that repeated measurements may be made in the same animal over time. When applied to the conscious, freely moving animal, this allows associations between neurochemical changes and their roles in behaviors to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adell, A., Sarna, G.S., Hutson, P.H., and Curzon, G., 1989, An in vivo dialysis and behavioral study of the release of 5-HT by p-chloro-amphetamine in reserpinized rats, Brit. J. Pharmacol., 97: 206–212.

    CAS  Google Scholar 

  • Alexander, G.M., Grothusen, J.R., and Schwartzman, R.J., 1988, Flow dependent changes in the effective surface area of microdialysis probes, Life Sci., 43: 595–601.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, G.M., Teff, K.L., and Young, S.N., 1987, Serotonin in cisternal cerebrospinal fluid of the rat: measurement and use as an index of functionally active serotonin, Life Sci., 40: 2253–2260.

    Article  PubMed  CAS  Google Scholar 

  • Auerbach, S., and Lipton, P., 1985, Regulation of serotonin release from the in vitro rat hippocampus: effects of alterations in levels of depolarization and rates of serotonin metabolism, J. Neurochem., 44: 1116–1130.

    Article  PubMed  CAS  Google Scholar 

  • Azmitia, E.C., and Segal, M., 1978, An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat, J. Comp. Neurol., 179: 641–669.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, P.A., and Waldmeier, P.C., 1984, Negative feedback control of serotonin release in vivo: comparison of 5-hydroxy-indoleacetic acid levels measured by voltammetry in conscious rats and by biochemical techniques, Neuroscience, 11: 195–204.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., and Diemer, N.H., 1987, Cellular reactions to implantation of a microdialysis tube in the rat hippocampus, Acta Neuropathol., 74: 234–238.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral dialysis, J. Neurochem., 43: 1369–1374.

    Article  PubMed  CAS  Google Scholar 

  • Benveniste, H., Drejer, J., Schousboe, A., and Diemer, N.H., 1987, Regional cerebral glucose phosphorylation and blood flow after insertion of a microdialysis fiber through the dorsal hippocampus in the rat, J. Neurochem., 49: 729–734.

    Article  PubMed  CAS  Google Scholar 

  • Bito, L., Davson, H., Levin, E., Murray, M., and Sider, N., 1966, The concentrations of free amino acids and other electrolytes in cerebrospinal fluid, in vivo dialysate of brain, and blood plasma of the dog, J. Neurochem., 13: 1057–1067.

    Article  PubMed  CAS  Google Scholar 

  • Blundell, J.E., 1984, Serotonin and appetite, Neuropharmacology, 23: 1537–1551.

    Article  PubMed  CAS  Google Scholar 

  • Bonanno, G., Maura, G., and Raiteri, M., 1986, Pharmacological characterization of release regulating serotonin autoreceptors in rat cerebellum, Eur. J. Pharmacol., 126: 317.

    Article  PubMed  CAS  Google Scholar 

  • Burns, D., London, J., Brunswick, D.J., Pring, M., Garfinkel, D., Rabinowitz, J.L., and Mendels, J., 1976, A kinetic analysis of 5-hydroxyindoleacetic acid excretion from rat brain and CSF, Biol. Psych., 11: 125–157.

    CAS  Google Scholar 

  • Chan-Palay, V., 1976, Serotonin afferents from raphe nuclei to the cerebellum in mammals, Exp. Brain Res., Suppl., 1: 20–25.

    Google Scholar 

  • Church, W.H., and Justice, J.B., 1986, Sampling considerations for on-line microbore liquid chromatography of brain dialysate, 58: 1649–1656.

    Google Scholar 

  • Commissiong, J.W., 1985, Monoamine metabolites: their relationship and lack of relationship to monoaminergic neuronal activity, Biochem. Pharmacol., 34: 289–290.

    Article  Google Scholar 

  • Cudennec, A., Duverger, D., Serrano, A., Scatton, B., and Mackenzie, E.T., 1988, Influence of ascending serotonergic pathways on glucose use in the conscious rat brain. II. Effects of electrical stimulation of the rostral raphe nuclei, Brain Res., 444: 227–246.

    Article  PubMed  CAS  Google Scholar 

  • Curzon, G., 1986, Critique: serotonin neurochemistry revisited: a new look at some old axioms, Neurochem. Int., 2: 155–159.

    Article  Google Scholar 

  • Curzon, G., and Marsden, C.A., 1975, Metabolism of a tryptophan load in the hypothalamus and other brain regions, J. Neurochem., 25: 251–256.

    Article  PubMed  CAS  Google Scholar 

  • Defeudis, F.V., 1986, New studies on cerebrovascular endothelium — possible reference to the interpretation of ‘precursor-loading’ experiments, Trends Pharmacol. Sci., 7: 51–52.

    Article  CAS  Google Scholar 

  • Delgado, J.M.R., Defeudis, F.V., Roth, R.H., Ryugo, D.K., and Mitruka, B.M., 1972, Dialtrode for long term intracerebral perfusion in the awake cat brain, J. Arch. Int. Pharmacodyn., 198: 9–21.

    CAS  Google Scholar 

  • De Simoni, M.G., Sokola, A., Fodritto, F., Dal Toso, G., and Algeri, S., 1987, Functional meaning of tryptophan-induced increase of 5-HT metabolism as clarified by in vivo voltammetry, Brain Res., 411: 89–94.

    Article  PubMed  Google Scholar 

  • Dourish, C.T., Hutson, P.H., and Curzon, G., 1985, Characteristics of feeding induced by the serotonin agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), Brain Res. Bull., 15: 377–384.

    Article  PubMed  CAS  Google Scholar 

  • During, M.J., Heyes, M.P., Freese, A., Markey, S.P., Martin, J.B., and Roth, R.H., 1989, Quinolinic acid concentrations in striatal extracellular fluid reach potentially neurotoxic levels following systemic L-tryptophan loading, Brain Res., 476: 384–387.

    Article  PubMed  CAS  Google Scholar 

  • Edvinsson, L., Birath, E., Uddman, R., Lee, T.J.-F., Duerger, D., Mackenzie, E.T., and Scatton, B., 1984, Indoleaminergic mechanisms in brain vessels; localization, concentration, uptake and in vitro responses of 5-hydroxytryptamine, Acta Physiol. Scand., 121: 291–299.

    Article  PubMed  CAS  Google Scholar 

  • Elks, M.L., Youngblood, W.W., and Kizer, J.S., 1979, Serotonin synthesis and release in brain slices: independence of tryptophan, Brain Res., 172: 471–486.

    Article  PubMed  CAS  Google Scholar 

  • Fernstrom, J.D., and Wurtman, R.J., 1971, Brain serotonin content: physiological dependence on plasma tryptophan levels, Science, 173: 149–151.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A.C., Gill, R., Kemp, J.A., and Woodruff, G.N., 1987, Systemic administration of MK-801 prevents N-methyl-D-aspartäte-induced neuronal degeneration in rat brain. Neurosci. Lett., 76: 307–311.

    Article  PubMed  CAS  Google Scholar 

  • Gessa, G.L., and Tagliamonte, A., 1974, Serum free tryptophan: control of brain concentrations of tryptophan and of synthesis of 5-hydroxytryptamine, in: “Ciba Foundation Symposium 22: Aromatic Acids in the Brain”, Excerpta Medica, Amsterdam, pp. 207–216.

    Google Scholar 

  • Globus, M.P.-T., Busto, R., Dietrich, W.D., Martinez, E., Valdes, I., and Ginsberg, M.D., 1988, Intra-ischemic extracellular release of dopamine and glutamate is associated with striatal vulnerability to ischemia, Neurosci. Lett., 91: 36–40.

    Article  PubMed  CAS  Google Scholar 

  • Hagberg, H., Lehmann, A., Sandberg, M., Nystrom, B., Jacobson, I., and Hamberger, A., 1985, Ischemia-induced shift of inhibitory and excitatory amino acids from intra-to extracellular compartments, J. Cereb. Blood Flow Metab., 5: 413–419.

    Article  PubMed  CAS  Google Scholar 

  • Hamberger, A., and Nyström, B., 1984, Extra-and intracellular amino acids in the hippocampus during development of hepatic encephalopathy, Neurochem. Res., 9: 1182–1192.

    Article  Google Scholar 

  • Hardebo, J.E., Emson, P.C., Falck, B., Owman, C., and Rosengren, E., 1980, Enzymes reacted to monoamine transmitter metabolism in brain microvessels, J. Neurochem., 35: 1388–1393.

    Article  PubMed  CAS  Google Scholar 

  • Hery, F., and Ternaux, J.P., 1981, Regulation of release processes in central serotonergic neurons, J. Physiol. (Paris), 77: 287–301.

    CAS  Google Scholar 

  • Holman, R.B., and Vogt, M., 1972, Release of 5-hydroxytryptamine from caudate nucleus and septum, J. Physiol., 223: 243–254.

    PubMed  CAS  Google Scholar 

  • Hutson, P.H., and Curzon, G., 1989, Concurrent determination of effects of p-chloroamphetamine on central extracellular 5-hydroxytryptamine concentration and behavior, Br. J. Pharmacol., 96: 801–806.

    PubMed  CAS  Google Scholar 

  • Hutson, P.H., Sarna, G.S., and Curzon, G., 1986, Neuropharmacokinetic applications of in vivo monitoring techniques, Ann. N.Y. Acad. Sci., 473: 549–552.

    Article  CAS  Google Scholar 

  • Hutson, P.H., Sarna, G.S., O’Connell, M.T. and Curzon, G., 1989, Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OH-DPAT into the nucleus raphe dorsalis, Neurosci. Lett., in press.

    Google Scholar 

  • Hutson, P.H., Sarna, G.S., Kantamaneni, B.D., and Curzon, G., 1985, Monitoring the effect of a tryptophan load on brain indole metabolism in freely moving rats by simultaneous cerebrospinal fluid monitoring and brain dialysis, J. Neurochem., 44: 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  • Hutson, P.H., Sarna, G.S., Sahakian, B.J., Dourish, C.T., and Curzon, G., 1986, Monitoring 5-HT metabolism in the brain of the freely moving rat, Ann. N.Y. Acad. Sci., 473: 321–335.

    Article  PubMed  CAS  Google Scholar 

  • Kalaria, R.N., and Harik, S.I., 1987, Blood-brain barrier monoamine oxidase: enzyme characterization in cerebral microvessels and other tissues from six mammalian species, including human, J. Neurochem., 49: 856–864.

    Article  PubMed  CAS  Google Scholar 

  • Kalén, P., Strecker, R.E., Rosengren, E., and Björklund, A., 1988, Endogenous release of neuronal serotonin and 5-hydroxyindoleacetic acid in the caudate-putamen of the rat as revealed by intracerebral dialysis coupled to high-performance liquid chromatography with fluorimetric detection, J. Neurochem., 51: 1422–1435.

    Article  PubMed  Google Scholar 

  • Knott, P.J., 1988, Modern methods for studying the release of serotonin, in: “Neuronal Serotonin”, Wiley, New York, pp. 93–127.

    Google Scholar 

  • Knott, P.J., and Curzon, G., 1974, Effect of increased brain tryptophan on 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in the hypothalamus and other brain regions, J. Neurochem., 22: 1065–1071.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, D.M., Wolf, W.A., and Youdim, M.B.H., 1985, 5-Hydroxytryptamine release in vivo from a cytoplasmic pool: studies on the behavioral syndrome in reserpinized rats, Br. J. Pharmacol., 84: 121–129.

    PubMed  CAS  Google Scholar 

  • Lehmann, A., Hagberg, H., Jacobson, I., and Hamberger, A., 1985, Effects of status epilepticus on extracellular amino-acids in the hippocampus, Brain Res., 359: 147–151.

    Article  PubMed  CAS  Google Scholar 

  • Lerma, J., Herranz, A.S., Herras, O., Abraira, V., and Martin Del Rio, R., 1986, In vivo determination of extracellular concentrations of amino acids in the rat hippocampus, Brain Res., 383: 145–155.

    Article  Google Scholar 

  • Lookingland, K.J., Shannon, N.J., Chapin, D.S., and Moore, K.E., 1986, Exogenous tryptophan increases synthesis, storage and intraneuronal metabolism of 5-hydroxytryptamine in the rat hypothalamus, J. Neurochem., 47: 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Manikij, C., Spatz, M., Veki, Y., Nagatsu, I., and Bembry, J., 1984, Cerebrovascular endothelial cell culture: metabolism and synthesis of 5-hydroxytryptamine, J. Neurochem., 43: 316–319.

    Article  Google Scholar 

  • Mans, A.M., Biebuyck, J.F., Shelly, K., and Hawkins, J.P., 1982, Regional blood-brain barrier permeability to amino acids after portacaval anastomosis, J. Neurochem., 38: 705–717.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H., Ginsberg, M., and Dietrich, W.D., 1988, (S)-Emopamil, a novel calcium channel blocker and serotonin S2 antagonist markedly reduces infarct size following middle cerebral artery occlusion in the rat, Neurology, 38: 1667–1673.

    Article  PubMed  CAS  Google Scholar 

  • Neckers, L.M., Biggio, G., Moja, E., and Meek, J.L., 1977, Modulation of brain tryptophan hydroxylase activity by brain tryptophan content, J. Pharmacol. Exp. Therap., 201: 110–116.

    CAS  Google Scholar 

  • Ozyurt, E., Graham, D.I., Woodruff, G.N., and MeCulloch, J., 1988, Protective effect of the glutamate antagonist MK-801 in focal cerebral ischemia in the cat, J. Cereb. Blood Flow Metab., 8: 138–143.

    Article  PubMed  CAS  Google Scholar 

  • Pulsinelli, W.A., Brierley, J.B., and Plum, F., 1982, Temporal profile of neuronal damage in a model of transient forebrain ischemia, Ann. Neurol., 11: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Sarna, G.S., Hutson, P.H., and Curzon, G., 1984, Effect of alpha-methylfluorodopa on dopamine metabolites: importance of conjugates and egress, Europ. J. Pharmacol., 100: 343–350.

    Article  CAS  Google Scholar 

  • Sarna, G.S., Hutson, P.H., Tricklebank, M.D., and Curzon, G.S., 1983, Determination of brain 5-hydroxytryptamine turnover in freely moving rats using repeated sampling of cerebrospinal fluid, J. Neurochem., 40: 383–388.

    Article  PubMed  CAS  Google Scholar 

  • Sarna, G.S., Obrenovitch, T.P., Matsumoto, T., Symon, L., and Curzon, G., 1989, Differential effect of cerebral ischaemia on dopamine and serotonin release as determined by in vivo brain dialysis, J. Cereb. Blood Flow Metab., in press.

    Google Scholar 

  • Sarna, G.S., Tricklebank, M.D., Kantamaneni, B.D., Hunt, A., Patel, A.J., and Curzon, G., 1982, Effect of age on variables influencing the supply of tryptophan to the brain, J. Neurochem., 39: 1283–1290.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, D.H., McClane, S., Hernandez, L., and Hoebel, B.G., 1989, Feeding increases extracellular serotonin in the lateral hypothalamus of the rat as measured by microdialysis, Brain Res., 479: 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, T., Bramwell, S.R., and Grahame-Smith, D., 1989, 5-HT1 agonists reduce 5-hydroxytryptamine release in rat hippocampus in vivo as determined by brain microdialysis, Br. J. Pharmacol., 96: 283–290.

    PubMed  CAS  Google Scholar 

  • Sleight, A.J., Marsden, C.A., Martin, K.F., and Palfreyman, M.G., 1988, Relationship between extracellular 5-hydroxytryptamine and behaviour following monoamine oxidase inhibition and L-tryptophan, Br. J. Pharmacol., 93: 303–310.

    PubMed  CAS  Google Scholar 

  • Steinbusch, H.W.M., 1984, Serotonin-immunoreactive neurones and their projections in the CNS, in: “Handbook of Chemical Neuroanatomy, Vol. 3”, Björklund, A., Hökfelt, T., and Kuhar, M.J., eds., Elsevier, Amsterdam, pp. 68–125.

    Google Scholar 

  • Suter, H.A., and Collard, K.J., 1983, The regulation of 5-hydroxytryptamine release from superfused synaptosomes by 5-hydroxytryptamine and its immediate precursors, Neurochem. Res., 8: 723–730.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y., Kimura, H., and Sano, Y., 1982, Immunohistochemical demonstration of serotonin-containing nerve fibers in the cerebellum, Cell Tiss. Res., 226: 1–12.

    CAS  Google Scholar 

  • Ternaux, J.P., Hery, F., Hamon, N., Bourgoin, S., and Glowinski, J., 1977, 5-HT release from ependymal surface of the caudate nucleus in ‘encephale isolé’ cats, Brain Res., 132: 575–579.

    Article  PubMed  CAS  Google Scholar 

  • Tossmann, V., and Ungerstedt, U., 1986, Microdialysis in the study of extracellular levels of amino acids in the rat brain, Acta Physiol. Scand., 128: 9–14.

    Article  Google Scholar 

  • Tracqui, P., Morot-Gaudry, Y., Staub, J.F., Brezillon, P., Perault-Staub, A.M., Bourgoin, S., and Hamon, M., 1983, Model of brain serotonin metabolism, II. Physiological Interpretation, Am. J. Physiol., 244: R206–R215.

    PubMed  CAS  Google Scholar 

  • Ungerstedt, U., and Pycock, C.H., 1974, Functional correlates of dopamine neurotransmission, Bull. Schweiz. Akad. Med. Wiss., 30: 44–55.

    PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., Damsma, G., Rollema, H., De Vries, J.B., and Horn, A.S., 1987, Scope and limitations of in vivo brain dialysis: a comparison of its applications to various neurotransmitter systems, Life Sci., 41: 1763–1776.

    Article  PubMed  CAS  Google Scholar 

  • Westerink, B.H.C., and De Vries, J.B., 1988, Characterization of in vivo dopamine release determined by brain microdialysis after acute and subchronic implantations: methodological aspects, J. Neurochem., 51: 683–687.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, W.A., Youdim, M.B.H., and Kuhn, D.M., 1985, Does brain 5-HIAA indicate serotonin release or monoamine oxidase activity?, Eur. J. Pharmacol., 109: 381–387.

    Article  PubMed  CAS  Google Scholar 

  • Zetterström, T., Brundin, P., Gage, F.H., Sharp, T., Isacson, O., Dunnett, S.B., Ungerstedt, U., and Björklund, A., 1986, Brain Res., 362: 344–349.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Sarna, G. (1991). Brain Indole Metabolism Assessed Using in Vivo Dialysis. In: Schwarcz, R., Young, S.N., Brown, R.R. (eds) Kynurenine and Serotonin Pathways. Advances in Experimental Medicine and Biology, vol 294. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5952-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5952-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5954-8

  • Online ISBN: 978-1-4684-5952-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics