Mass Spectrometric Determinations of Tryptophan and its Metabolites

  • S. P. Markey
  • R. L. Boni
  • J. A. Yergey
  • M. P. Heyes
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)


The unique character of a chemical compound is determined by its molecular architecture. That architecture is a sum not only of all of the atoms in the compound and their masses, but of their particular relationship in space, i.e., the molecular bonds, sub-structural components, and their stereochemistry. Consequently, a physical tool which can measure both the summed masses of the elements in a compound and reflect the subtleties of their arrangement is very useful in both quantitative and qualitative investigations in biochemistry.


Quinolinic Acid Kynurenic Acid Chemical Ionization Mass Spectrometry Tryptophan Metabolism Mass Spectrometric Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Artigas, F., and Gelpi, E., 1979, A new mass fragmentographic method for the simultaneous analysis of tryptophan, tryptamine, indole-3-acetic acid, serotonin, and 5-hydroxyindole-3-acetic acid in the same sample of rat brain, Anal. Biochem., 92: 233–42.PubMedCrossRefGoogle Scholar
  2. Artigas, F., and Gelpi, E., 1987, Evaluation of the potential of thermospray liquid chromatography-mass spectrometry in neurochemistry. J. Chromatogr., 394: 123–134.PubMedCrossRefGoogle Scholar
  3. Beck, O., and Pevet, P., 1984, Analysis of melatonin, 5-methoxytryptophol and 5-methoxyindoleacetic acid in the pineal gland and retina of hamster by capillary column gas chromatography-mass spectrometry. J. Chromatogr., 311: 1–8.PubMedCrossRefGoogle Scholar
  4. Bertilsson, L., Atkinson, A.J., Jr., Althaus, J.R., Härfast, A., Lindgren, J.E., and Holmstedt, B., 1972, Quantitative determination of 5-hydroxyindole-3-acetic acid in cerebrospinal fluid by gas chromatography-mass spectrometry, Anal. Chem., 44: 1434–1438.PubMedCrossRefGoogle Scholar
  5. Caprioli, R.M., 1972, Use of stable isotopes, in: “Biochemical Applications of Mass Spectrometry”, G.R. Waller, ed., Wiley, New York.Google Scholar
  6. Carlá, V., Lombardi, G., Beni, M., Russi, P., Moneti, G., and Moroni, F., 1988, Identification and measurement of kynurenic acid in the rat brain and other organs, Anal. Biochem., 169: 89–94.PubMedCrossRefGoogle Scholar
  7. Curtius, H.-Ch., Farner-Wegmann, H., Niederwieser, A., and Rey, F., 1980, in vivo measurement of tryptophan-5-hydroxylase activity using stable isotopes and GC/MS, in: “Biochemical and Medical Aspects of Tryptophan Metabolism”, Hayaishi, O., Ishimura, Y., and Kido, R., eds., Elsevier/ North-Holland, Amsterdam, pp. 281–290.Google Scholar
  8. Davis, B. A., and Durden, D.A., 1987, A comparison of the gas Chromatographic and mass spectrometric properties of the pentafluoropropionyl and heptafluorobutyryl derivatives of the methyl, trifluoroethyl, pentafluoropropyl and hexafluoroisopropyl esters of twelve acidic metabolites of biogenic amines, Biomed. Environ. Mass. Spectrom., 14: 197–206.PubMedCrossRefGoogle Scholar
  9. Davis, B.A., Durden, D.A., and Boulton, A.A., 1986, Simultaneous analysis of twelve biogenic amine metabolites in plasma, cerebrospinal fluid and urine by capillary column gas chromatography-high-resolution mass spectrometry with selected-ion monitoring. J. Chromatogr., 374: 227–238.PubMedCrossRefGoogle Scholar
  10. Donike, M., Gola R., and Jaenicke, L., 1977, Determination of indolalkylamines after selective derivatisation. J. Chromatogr., 134: 385–395.PubMedCrossRefGoogle Scholar
  11. Durden, D.A., and Boulton, A.A., 1988, Analysis of tryptamine at the femtomole level in tissue using negative ion chemical ionization gas chromatography-mass spectrometry, J. Chromatogr., 440: 253–259.PubMedCrossRefGoogle Scholar
  12. Fellenberg, A.J., Phillipou, G., and Seamark, R.F., 1980, Specific quantitation of urinary 6-hydroxymelatonin sulphate by gas chromatography mass spectrometry, Biomed. Mass. Spectrom., 7: 84–87.PubMedCrossRefGoogle Scholar
  13. Francis, P.L., Leone, A.M., Young, I.M., Stovell, P., and Silman, R.E., 1987, Gas Chromatographic-mass spectrometric assay for 6-hydroxymelatonin sulfate and 6-hydroxymelatonin glucuronide in urine, Clin. Chem., 33: 453–457.PubMedGoogle Scholar
  14. Hammar, C.G., Holmstedt, B., and Ryhage, R., 1968, Identification of chlorpromazine and its metabolites in human blood by a new method, Anal. Biochem., 25: 532–548.PubMedCrossRefGoogle Scholar
  15. Hayashi, T., Shimamura, M., Matsudea, F., Minatogawa, Y., Naruse, H., and Iida, Y., 1986, Sensitive determination of deuterated and non-capillary gas chromatography and negative ion chemical ionization mass spectrometry, J. Chromatogr., 383: 259–269.PubMedCrossRefGoogle Scholar
  16. Heyes, M.P., and Markey, S.P., 1988a, Quantification of quinolinic acid in rat brain, whole blood, and plasma by gas chromatography and negative chemical ionization mass spectrometry: effects of systemic L-tryptophan administration on brain and blood quinolinic acid concentrations, Anal. Biochem., 174: 349–359.PubMedCrossRefGoogle Scholar
  17. Heyes, M.P., and Markey, S.P., 1988b, (18O) quinolinic acid: its esterification without back exchange for use as internal standard in the quantification of brain and CSF quinolinic acid, Biomed. Environ. Mass. Spectrom., 15: 291–293.PubMedCrossRefGoogle Scholar
  18. Higa, S., and Markey S.P., 1985, Identification and quantification of 5-methyoxyindole-3-acetic acid in human urine, Anal. Biochem., 144: 86–93.PubMedCrossRefGoogle Scholar
  19. Johnson, J.V., Yost, R.A., and Faull, K.F., 1984, Tandem mass spectrometry for the trace determination of tryptolines in crude brain extracts, Anal. Chem., 56: 1655–1661.PubMedCrossRefGoogle Scholar
  20. Kopin, I.J., Pare, C.M.B., Axelrod, J., and Weissbach, H., 1961, The fate of melatonin in animals, J. Biol. Chem., 236: 3072–3075.PubMedGoogle Scholar
  21. Lee, C.R., and Esnaud, H., 1988a, Determination of melatonin in blood plasma, using capillary gas chromatography and electron impact medium-resolution mass spectrometry, Biomed. Environ. Mass. Spectrom., 15: 249–252.PubMedCrossRefGoogle Scholar
  22. Lee, C.R., and Esnaud, H., 1988b, Determination of melatonin by GC-MS: problems with solid phase extraction (SPE) columns, Biomed. Environ. Mass. Spectrom., 15: 677–679.PubMedCrossRefGoogle Scholar
  23. Lewy, A.J., and Markey, S.P., 1978, Analysis of melatonin in human plasma by gas chromatography negative chemical ionization mass spectrometry, Science, 201: 741–743.PubMedCrossRefGoogle Scholar
  24. Lewy, A.J., Tetsuo, M., Markey, S.P., Goodwin, F.K., and Kopin, I.J., 1980, Pinealectomy abolishes plasma melatonin in the rat, J. Clin. Endocrinol. Metab., 50: 204–205.PubMedCrossRefGoogle Scholar
  25. Low, G.K.-C., and Duffield, A.M., 1984, Positive and negative ion chemical ionization mass spectra of amino acid carboxy-n-butyl ester N-pentafluoropropionate derivatives, Biomed. Mass Spectrom., 11: 223–229.CrossRefGoogle Scholar
  26. Markey, S.P., and Abramson, F.P., 1982, Capillary gas chromatography/mass spectrometry with a microwave discharge interface for determination of radioactive-carbon-containing compounds, Anal. Chem., 54: 2375–2376.CrossRefGoogle Scholar
  27. Markey, S.P., and Buell, P.E., 1982, Pinealectomy abolishes 6-hydroxymelatonin excretion by male rats, Endocrinol., 111: 425–426.CrossRefGoogle Scholar
  28. Markey, S.P., Colburn, R.W., and Johannessen, J.N., 1981, Efficient extraction and mass spectrometric assay of serotonin in biological fluids, Biomed. Mass. Spectrom., 8: 301–304.PubMedCrossRefGoogle Scholar
  29. Mawhinney, T.P., Robinett, R.S. Atalay, A., and Madson, M.A., 1986, Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gasliquid chromatography and mass spectrometry, J. Chromatogr., 358: 231–242.PubMedCrossRefGoogle Scholar
  30. Middleditch, B. S., 1975, A novel derivatization procedure for the vaporphase analysis of tryptophan, Analyt. Lett., 8: 397–401.CrossRefGoogle Scholar
  31. Moroni, F., Russi, P., Lombardi, G., Beni, M., and Carlá, V., 1988, Presence of kynurenic acid in the mammalian brain, J. Neurochem., 51: 177–180.PubMedCrossRefGoogle Scholar
  32. Netting, A.G., and Milborrow, B.V., 1988, Methane chemical ionization mass spectrometry of the pentafluorobenzyl derivatives of abscisic acid its metabolites and other plant growth regulators, Biomed. Environ. Mass Spectrom., 17: 281–286.CrossRefGoogle Scholar
  33. Sisak, M.E., Markey, S.P., Colburn, R.W., Zavadil, A.P., and Kopin, I.J., 1979, Identification of 6-hydroxymelatonin in normal human urine by gas chromatography-mass spectrometry, Life Sci., 25: 803–806.PubMedCrossRefGoogle Scholar
  34. Susilo, R., Damm, H., and Rommelspacher, H., 1988, Formation of a new biogenic aldehyde adduct by incubation of tryptamine with rat brain tissue, J. Neurochem., 50: 1817–1824.PubMedCrossRefGoogle Scholar
  35. Taylor, P.A., Garrick, N.A., Tamarkin, L., Murphy, D.L., and Markey, S.P., 1985, Diurnal rhythms of N-acetylserotonin and serotonin in cerebrospinal fluid in monkeys, Science, 228: 900.PubMedCrossRefGoogle Scholar
  36. Tetsuo, M., Markey, S.P., Colburn, R.W., and Kopin, I.J., 1981, Quantitative analysis of 6-hydroxymelatonin in human urine by gas chromatography-negative chemical ionization mass spectrometry, Anal. Biochem., 110: 208–215.PubMedCrossRefGoogle Scholar
  37. Vicchio, D., Speedie, M.K., and Callery, P.S., 1987, Gas Chromatographicmass spectrometric determination of tryptophan transaminase-catalyzed deuterium exchange, J. Chromatogr., 415: 104–109.PubMedCrossRefGoogle Scholar
  38. Walker, R.W., Mandel, L.R., Delisi, L., Wyatt, R.J., and Vandenheuvel, W.J., 1984, Capillary column gas-liquid chromatography selected ion monitoring assay for [13C, 15N]tryptamine in schizophrenia patients, J. Chromatogr., 289: 223–229.PubMedCrossRefGoogle Scholar
  39. Wang, T.L., Shih, M., Markey, S.P., and Duncan, M.W., 1989, Quantitative analysis of low molecular weight polar compounds by continuous flow liquid secondary ion tandem mass spectrometry, Anal. Chem., 61: 1013–1016.PubMedCrossRefGoogle Scholar
  40. Williams, T.D., Vachon, L., and Anderegg, R.J., 1986, Negative ion chemical ionization mass spectrometry of 2,4-dinitrophenyl amino acid esters, Anal. Biochem., 153: 372–379.PubMedCrossRefGoogle Scholar
  41. Wolfensberger, M., Amsler, U., Cuénod, M., Foster, A.C., Whetsell, W.O., Jr., and Schwarcz, R., 1983, Identification of quinolinic acid in rat and human brain tissue, Neurosci. Lett., 41: 247–252.PubMedCrossRefGoogle Scholar
  42. Young, I.M., Leone, R.M., Francis, P., Stovell, P., and Silman, R.E., 1985, Melatonin is metabolized to N-acetyl serotonin and 6-hydroxymelatonin in man, J. Clin. Endocrinol. Metab., 60: 114.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • S. P. Markey
    • 1
  • R. L. Boni
    • 1
  • J. A. Yergey
    • 1
    • 2
  • M. P. Heyes
    • 1
  1. 1.Section on Analytical Biochemistry Laboratory of Clinical ScienceNational Institute of Mental HealthBethesdaUSA
  2. 2.Laboratory of Clinical StudiesNIAAABethesdaUSA

Personalised recommendations