Cardiovascular and Endocrine Properties of L-Tryptophan in Combination with Various Diets

  • H. Lehnert
  • J. Beyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)

Abstract

Brain serotonin neurons are intimately involved in a number of relevant physiological functions such as cardiovascular regulation, neuroendocrine output from the anterior pituitary (e.g. ACTH, prolactin), regulation of behavior (e.g. agression, sleep, locomotor and sexual behavior), mood or appetite control (Fernstrom, 1983; Lehnert et al., 1987; Spring et al., 1987; Wurtman, 1987). The synthesis of brain serotonin is dependent on the availability of the large neutral amino acid L-tryptophan that is hydroxylated to 5-L-hydroxytryptophan and subsequently decarboxylated to yield serotonin. The rate-limiting enzyme tryptophan hydroxylase has a Michaelis constant of approximately 2–3 x 10−5 M with tetrahydrobiopterin used as a cofactor (Tong and Kaufmann, 1975) and thus approximates normal brain tryptophan concentrations of about 1–5 x 10−5 M. Therefore, the enzyme is not saturated under normal circumstances and an increased availability of brain tryptophan will lead to an enhanced synthesis of brain serotonin (Fernstrom and Wurtman, 1971; Fernstrom, 1983).

Keywords

Placebo Dopamine Tyrosine Cortisol Serotonin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Damluji, S., 1988, Adrenergic mechanisms in the control of corticotrophin secretion, J. Endocrinol., 119: 5–14.PubMedCrossRefGoogle Scholar
  2. Anderson, K.E., Rosner, W., Khan, M., New, M., Pang, S., Wissel, P., and Kappas, A., 1987, Diet-hormone interactions: protein/carbohydrate ratio alters reciprocally the plasma levels of testosterone and cortisol and their binding globulins in man, Life Sci., 40: 1761–1768.PubMedCrossRefGoogle Scholar
  3. Bossy, J., Guidox, R., Milon, H., and Werzner, H.P., 1983, Development of hypertension in spontaneously hypertensive rats fed 1-tyrosine supplemented diets, Zeitschr. Ernéhrviss., 22: 45–49.Google Scholar
  4. Bowker, R.M., Steinbusch, H.W., and Coulter, J.D., 1979, Serotonergic and peptidergic projections to the spinal cord demonstrated by combined retrograde HRP histochemical and immunocytochemical staining method, Brain Res., 211: 412–417.CrossRefGoogle Scholar
  5. Bresnahan, M.R., Hatzinikolaou, P., Brunner, H.R., and Gavras, H., 1980, Effects of tyrosine infusion in normotensive and hypertensive rats, Am. J. Physiol., 239: H206–211.PubMedGoogle Scholar
  6. Buckingham, J.C., and Hodges, J.R., 1977, Production of corticotrophin releasing hormone by the isolated hypothalamus of the rat, J. Physiol., 272: 469–479.PubMedGoogle Scholar
  7. Conlay, L.A., Maher, T., and Wurtman, R.J., 1981, Tyrosine increases blood pressure in hypotensive rats, Science, 212: 559–560.PubMedCrossRefGoogle Scholar
  8. Cowen, P.J., Gadhvi, H., Gosden, B., and Kolakowska, T., 1985, Responses of prolactin and growth hormone to L-tryptophan infusion: effects in normal subjects and schizophrenic patients receiving neuroleptics, Psychopharmacology, 86: 164–169.PubMedCrossRefGoogle Scholar
  9. Diebschlag, U., Lehnert, H., Reche, A., Warnecke, W., Hellhammer, D., and Beyer, J., 1989, Effects of the precursor amino acids L-tyrosine and L-tryptophan on stress-induced blood pressure increases in borderline hypertensives, Acta Endocrinol., 120, Suppl. 1: 257.Google Scholar
  10. Echizen, K., and Freed, C.R., 1982, Long-term infusion of 5-L-hydroxytryptophan increases brain serotonin turnover and decreases blood pressure in normotensive rats, J. Pharmacol. Exp. Ther., 220: 579–584.PubMedGoogle Scholar
  11. Feltkamp, H., Meurer, K.A., and Godehardt, E., 1984, Tryptophan-induced lowering of blood pressure and changes of serotonin uptake by platelets in patients with essential hypertension, Klin. Wschr., 62: 1115–1119.PubMedCrossRefGoogle Scholar
  12. Fernstrom, J.D., 1983, Role of precursor availability in control of monoamine biosynthesis in the brain, Physiol. Rev., 63: 484–545.PubMedGoogle Scholar
  13. Fernstrom, J.D., and Wurtman, R.J., 1971, Brain serotonin content: physiological dependence on plasma tryptophan levels, Science, 173: 149–152.PubMedCrossRefGoogle Scholar
  14. Folkow, B., 1987, Psychosocial and central nervous influences in primary hypertension, Circul. Monogr., 6, 76: 10–19.Google Scholar
  15. Fregly, M.J., Lockley, O.E., van der Voort, J., Summers, C., and Henley, W.N., 1987, Chronic dietary administration of tryptophan prevents the development of deoxycorticosterone acetate salt induced hypertension in rats, Can. J. Physiol. Pharmacol., 65: 753–764.PubMedCrossRefGoogle Scholar
  16. Holmes, M.C., Renzo, G.D., Becford, U., Gillham, B., and Jones, M.T., 1982, Role of serotonin in the control of secretion of CRF, J. Endocrinol., 93: 151–160.PubMedCrossRefGoogle Scholar
  17. Kuhn, D.M., Wolf, W.A., and Lovenberg, W., 1980, Review of the role of the central serotonergic neuronal system in blood pressure regulation, Hypertension, 2: 243–255.PubMedCrossRefGoogle Scholar
  18. Lehnert, H., Beyer, J., Cloer, E., Gutberlet, I., and Hellhammer, D., Effects of L-tryptophan and various diets on behavioral functions in essential hypertensives, Neuropsychobiology, 21: 84–89.Google Scholar
  19. Lehnert, H., Beyer, J., Czernik, C., Schneider, K.P., Schrezenmeir, J., and Krause, U., 1988, Control of prolactin secretion by the dopamine precursor amino acid L-tyrosine, Akt. Ernähr., 14: 41–43.Google Scholar
  20. Lehnert, H., Beyer, J., Heismann, I., Siekermann, H., Schmidt, H., Ullrich, K., and Vetter, H., 1988, Einfluss von L-Tryptophan und kohlenhydratreicher Diät auf das Blutdruckverhalten essentieller Hypertoniker, Akt. Ernähr., 13: 1–5.Google Scholar
  21. Lehnert, H., Beyer, J., Hellhammer, D., Gutberiet, I., Ullrich, K., and Vetter, H., Effects of L-tryptophan and macronutrient intake on blood pressure, plasma amino acids, and endocrine parameters in essential hypertensives, submitted.Google Scholar
  22. Lehnert, H., Lombard!, F., Raeder, E.A., Lorenzo, A.V., Verrier, R.L., Lown, B., and Wurtman, R.J., 1987, Increased release of brain serotonin reduces vulnerability to ventricular fibrillation in the cat, J. Cardiovasc. Pharmacol., 10: 389–397.PubMedCrossRefGoogle Scholar
  23. Lehnert, H., Lombardi, F., Verrier, R.L., Lown, B., and Wurtman, R.J., 1983, Suppression of cardio-cardiac reflexes by increasing central serotonergic neurotransmission, J. Am. Coll. Cardiol., 1: 606.Google Scholar
  24. Lehnert, H., Maher, T., Yokogoshi, H., and R.J. Wurtman, 1985, Effects of tyrosine on blood pressure and turnover of norepinephrine in different brain areas of the spontaneously hypertensive rat, J. Hypertens., 3,412.CrossRefGoogle Scholar
  25. Lehnert, H., Reinstein, D.K., Strowbridge, B.W., and Wurtman, R.J., 1984, Neurochemical and biochemical consequences of an acute uncontrollable stress: effects of dietary tyrosine, Brain Res., 303: 215–223.PubMedCrossRefGoogle Scholar
  26. Lewis, D.A., and Sherman, B.M., 1984, Serotonergic stimulation of adrenocorticotropin secretion in man, J. Clin. Endocrinol. Metabol., 58: 458–462.CrossRefGoogle Scholar
  27. Madras, B.K., Cohen, E.L., Messing, R., Munro, H.N., and Wurtman, R.J., 1974, Relevance of serum free tryptophan to tissue tryptophan concentrations, Metabolism, 23: 1107–1116.PubMedCrossRefGoogle Scholar
  28. Milner, J.D., and Wurtman, R.J., 1986, Catecholamine synthesis: physiological coupling to precursor supply, Biochem. Pharmacol., 35: 875–881.PubMedCrossRefGoogle Scholar
  29. Modlinger, R.S., Schonmuller, J.M., and Arora, S.P., 1980, Adrenocorticotropin release by tryptophan in man, J. Clin. Endocrinol. Metabol., 50: 360–363.CrossRefGoogle Scholar
  30. Morgenroth, V.A., Walters, J.R., and Roth, R.H., 1976, Dopaminergic neurons — alterations in the kinetic properties of tyrosine hydroxylase after cessation of impulse flow, Biochem. Pharmacol., 25: 655–661.PubMedCrossRefGoogle Scholar
  31. Raeder, E.A., Berger, R., Kenet, R., Kiely, J.P., Lehnert, H., Cohen, R.J., and Lown, B., 1987, Assessment of autonomie cardiac control by power spectrum of heart rate fluctuations, J. Appl. Cardiol., 2: 283–300.Google Scholar
  32. Reinstein, D.K., Lehnert, H., Scott, N.A., and Wurtman, R.J., 1984, Tyrosine prevents behavioral and neurochemical correlates of acute stress in rats, Life Sci., 34: 2225–2231.PubMedCrossRefGoogle Scholar
  33. Roth, R.H., Morgenroth, J.D., and Salzman, P.M., 1975, Tyrosine hydroxylase: allosteric activation induced by stimulation of activated noradrenergic neurons, Naunyn-Schmiedeb. Arch. Pharmacol., 289: 327–334.CrossRefGoogle Scholar
  34. Sarkar, D.K., Gottschall, P.E., and Meites, J., 1984, Decline of tuberoinfundibular dopaminergic function resulting from chronic hyperprolactinemia in rats, Endocrinology, 115: 1269–1274.PubMedCrossRefGoogle Scholar
  35. Shenker, Y., Gross, M.B., and Grekin, R.J., 1985, Central serotonergic stimulation of aldosterone secretion, J. Clin. Invest., 76: 1485–1490.PubMedCrossRefGoogle Scholar
  36. Smits, J.F., van Essen, H., and Stuyker-Boudier, H.A.J., 1978, Serotonin-mediated cardiovascular responses to electrical stimulation of the raphe nuclei in the rat, Life Sci., 23: 173–178.PubMedCrossRefGoogle Scholar
  37. Sole, M.J., Benedict, C.R., Myers, M.G., Leenen, F.H.H., and Anderson, G.H., 1985, Chronic dietary tyrosine supplements do not affect mild essential hypertension, Hypertension, 7: 593–596.PubMedCrossRefGoogle Scholar
  38. Spring, B., Chiodo, J., and Bowen, D.J., 1987, Carbohydrates, tryptophan and behavior: a methodological review, Psychol. Bull., 102: 234–256.PubMedCrossRefGoogle Scholar
  39. Sved, A., and Fernstrom, J.D., 1982, Tyrosine availability and dopamine synthesis in the striatum: studies with gamma-butyrolactone, Life Sci., 29: 743–748.CrossRefGoogle Scholar
  40. Sved, A.F., Fernstrom, J.D., and Wurtman, R.J., 1979, Tyrosine administration reduces blood pressure and enhances brain norepinephrine release in spontaneously hypertensive rats, Proc. Nat. Acad. Sci. USA, 76: 3511–3514.PubMedCrossRefGoogle Scholar
  41. Sved, A.F., van Itallie, C.M., and Fernstrom, J.D., 1982, Studies on the antihypertensive action of L-tryptophan, J. Pharmacol. Exp. Ther., 221: 329–333.PubMedGoogle Scholar
  42. Tong, J.H., and Kaufmann, S., 1975, Tryptophan hydroxylase. Purification and some properties of the enzyme from rabbit hindbrain, J. Biol. Chem., 250: 4152–4158.PubMedGoogle Scholar
  43. Walger, P., Lehnert, H., Baumgart, P., Rahn, K.H., and Vetter, H., Chronic effects of L-tyrosine on circadian blood pressure in borderline hypertensives, submitted.Google Scholar
  44. Winokur, A., Lindberg, N.O., Lucki, I., Philipps, J., and Amsterdam, J.W., 1986, Hormonal and behavioral effects associated with intravenous L-tryptophan administration, Psychopharmacology, 88: 213–219.PubMedCrossRefGoogle Scholar
  45. Wolf, W.A., Kuhn, D.M., and Lovenberg, W., 1981, Pressor effects of dorsal raphe stimulation and intrahypothalamic serotonin in the spontaneously hypertensive rat, Brain Res., 208: 192–197.PubMedCrossRefGoogle Scholar
  46. Woolf, P.D., and Lee, L., 1977, Effect of the serotonin precursor tryptophan on pituitary hormone secretion, J. Clin. Endocrinol. Metabol., 45: 123.CrossRefGoogle Scholar
  47. Wurtman, R.J., 1987, Nutrients affecting brain composition and behavior, Integr. Psychiatry 5: 226–238.PubMedGoogle Scholar
  48. Yamori, Y., Fujiwara, M., Horie, K., and Lovenberg, W., 1980, The hypotensive effect of centrally administered tyrosine, Eur. J. Pharmacol., 68: 201–204.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. Lehnert
    • 1
  • J. Beyer
    • 1
  1. 1.IIIrd Medical Clinic Dept. of Endocrinology and MetabolismUniversity of MainzGermany

Personalised recommendations