Advertisement

Tryptophan and Related Alkaloids

  • M. Nakagawa
  • T. Hino
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)

Abstract

Tryptophan is metabolized to a number of biologically important substances (Hayaishi, 1962, 1974). It is now well established that tryptophan is metabolized to NAD via formylkynurenine which was formed by the oxidative cleavage of the 2,3-bond of the indole ring catalyzed by tryptophan-2,3-dioxygenase. On the other hand, the hydroxylation of tryptophan at 5-position accompanied by the NIH shift is another important reaction catalyzed by tryptophan 5-hydroxylase (Daly et al., 1972; Jerina and Daly, 1974; Boyd and Berchtold, 1979). Furthermore, tryptophan also serves as an important precursor for the biosynthesis of indole alkaloids (Scheme 1).

Keywords

Methylene Blue Total Synthesis Acridine Orange Indole Alkaloid Quinone Imine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyd, D.R., and Berchtold, G.A., 1979, Aromatization of arene 1,2-oxides. 1-Carboxy-and 1-carboalkoxybenzene oxides, J. Am. Chem. Soc., 101: 2470–2474, and references cited therein.CrossRefGoogle Scholar
  2. Chang, C.-J., Floss, H.G., Hurley, L.H., and Zmijewski, M., 1976, Application of long-range spin-spin couplings in biosynthetic studies, J. Org. Chem., 41: 2932–2934.PubMedCrossRefGoogle Scholar
  3. Daly, J.W., Jerina, D.M., and Witkop, B., 1972, Arene oxides and the NIH shift: the metabolism, toxicity and carcinogenicity of aromatic compounds, Experientia, 28: 1129–1264.PubMedCrossRefGoogle Scholar
  4. Gorman, M., and Lively, D.H., 1967, Pyrrolnitrin: a new mode of tryptophan metabolism, in: “Antibiotics” Vol. II, D. Gottlieb, and P.D. Shaw, eds., Springer-Verlag, New York, pp. 433–438.Google Scholar
  5. Hayaishi, O., ed., 1962, “Oxygenases” Academic Press, New York.Google Scholar
  6. Hayaishi, O., ed., 1974, “Molecular Mechanisms of Oxygen Activation”, Chapter 1, History and Scope, Academic Press, New York, pp. 1–29.Google Scholar
  7. Hino, T., Kodato, S., Takahashi, T., Yamaguchi, H., and Nakagawa, M., 1978, Oxidative dimerization of Nb-methoxycarbonyltryptamines by dye-sensitized photooxygenation in formic acid. Synthesis of (±)-folicanthine and (±)-chimonanthine, Tetrah. Lett., 19: 4913–4916.CrossRefGoogle Scholar
  8. Hino, T., Taniguchi, M., Yamamoto, I., Yamaguchi, K., and Nakagawa, M., 1981, Cyclic tautomers of tryptamines and tryptophans. V. Formation and reactions of cyclic tautomers of cyclo-L-tryptophanyl-L-proline, Tetrah. Lett., 22: 2565–2568.CrossRefGoogle Scholar
  9. Jerina, D.M., and Daly, J.W., 1974, Arene oxides: a new aspect of drug metabolism, Science, 185: 573–582.PubMedCrossRefGoogle Scholar
  10. Kodato, S., Nakagawa, M., Hongu, M., Kawate, T., and Hino, T., 1988, Total synthesis of (+)-fumitremorgin B, its epimeric isomers, and demethoxy derivatives, Tetrahedron, 44: 359–377.CrossRefGoogle Scholar
  11. Martin, L.L., Chang, C.-J., Floss, H.G., Mabe, J.A., Hagaman, E.W., and Wenkert, E., 1972, A 13C nuclear magnetic resonance study on the biosynthesis of pyrrolnitrin from tryptophan by pseudomonas, J. Am. Chem. Soc., 94: 8942–8944.CrossRefGoogle Scholar
  12. Nakagawa, M., 1980, Oxygenation of tryptophan to formylkynurenine-dye-sensitized photooxygenation, in: “Biochemical and Medical Aspects of Tryptophan Metabolism”, Hayaishi, O., Ishimura, U., and Kido, R., eds., Elsevier/ North Holland, pp. 49–58.Google Scholar
  13. Nakagawa, M., Fukushima, H., Kawate, T., Hongu, M., Kodato, S., Une, T., Taniguchi, M., and Hino, T., 1986a, Synthetic approach to the total synthesis of fumitremorgins II synthesis of optically active pentacyclic intermediates and their dehydrogenation, Tetrah. Lett., 27: 3235–3238.CrossRefGoogle Scholar
  14. Nakagawa, M., Ito, M., Hasegawa, Y., Akashi, S., and Hino, T., 1984a, Total synthesis (+)-tryptoquivaline, Tetrah. Lett., 25: 3865–3868.CrossRefGoogle Scholar
  15. Nakagawa, M., Kato, S., Fukazawa, H., Hasegawa, Y., Miyazawa, J., and Hino, T., 1985a, Oxidative transformation of tryptophan to 2-(2-aminopheny1)-2-pyrrolidone and kynurenine, Tetrah. Lett., 26: 5871–5874.CrossRefGoogle Scholar
  16. Nakagawa, M., Kodato, S., Hongu, M., Kawate, T., and Hino, T., 1986b, Total synthesis of fumitremorgen B, Tetrah. Lett., 27: 6217–6220.CrossRefGoogle Scholar
  17. Nakagawa, M., Liu, J.-J., and Hino, T., 1989, Total synthesis of (−)-eudistomin L and (−)-debromoeudistomin L, J. Am. Chem. Soc, 111: 2721–2722.CrossRefGoogle Scholar
  18. Nakagawa, M., Liu, J.-J., Ogata, K., and Hino, T., 1986c, Synthetic approaches to eudistomins. Part 1. synthesis of l-amino-3-thiaindolo[2,3-a] quinolizidine, Tetrah. Lett., 27: 6087–6090.CrossRefGoogle Scholar
  19. Nakagawa, M., Liu, J.-J., Ogata, K., and Hino, T., 1988, New evidence for the presence of a spiroindolenine intermediate in Pictet-Spengler reaction of Nb-hydroxytryptamine, J.C.S. Chem. Comm., 463–464.Google Scholar
  20. Nakagawa, M., Maruyama, T., Hirakoso, K., and Hino, T., 1980, Reactivity of oxytryptamine conversion to 3-(o-aminopheny1)-2-pyrrolidone and kynurenamine, Tetrah. Lett., 21: 4839–4842.CrossRefGoogle Scholar
  21. Nakagawa, M., Matsuki, K., and Hino, T., 1983a, A new synthesis of betacarboline, Tetrah. Lett., 34: 2171–2174.CrossRefGoogle Scholar
  22. Nakagawa, M., Sodeoka, M., Yamaguchi, K., and Hino, T., 1984b, Synthesis of the imidazo[l,2-α]indole-spirolactone ring system by oxidative double cyclization. A synthetic approach to tryptoquivalines, Chem. Pharmacol. Bull., 32: 1373–1384.CrossRefGoogle Scholar
  23. Nakagawa, M., Sugumi, H., Kodato, S., and Hino, T., 1981, Oxidative dimerization of Nb-acyltryptophans; total synthesis and absolute configuration of ditryptophenaline, Tetrah. Lett., 22: 5323–5326.CrossRefGoogle Scholar
  24. Nakagawa, M., Taniguchi, M., Sodeoka, M., Ito, M., Yamaguchi, K., and Hino, T., 1983b, Total synthesis of (+) — and (−)-tryptoquivaline G by biomimetic double cyclization, J. Am. Chem. Soc., 105: 3709–3710.CrossRefGoogle Scholar
  25. Nakagawa, M., Yokoyama, Y., Kato, S., and Hino, T., 1984c, Oxidative transformation to 5-hydroxy-N-formylkynurenine, Heterocycles, 22: 59–62.CrossRefGoogle Scholar
  26. Nakagawa, M., Yokoyama, Y., Kato, S., and Hino, T., 1985b, Dye-sensitized photo-oxygenation of tryptophan, Tetrahedron, 41: 2125–2132.CrossRefGoogle Scholar
  27. Sakan, T., and Hayaishi, O., 1950, α-hydroxytryptophan, not an intermediate between tryptophan and kynurenine, J. Biol. Chem., 186: 177–180.PubMedGoogle Scholar
  28. Taniguchi, M., Anjiki, T., Nakagawa, M., and Hino, T., 1984, Formation and reactions of the cyclic tautomers of tryptophans and tryptamines. VII. Hydroxylation of tryptophans and tryptamines, Chem. Pharm. Bull., 32: 2544–2554.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. Nakagawa
    • 1
  • T. Hino
    • 1
  1. 1.Faculty of Pharmaceutical SciencesChiba UniversityJapan

Personalised recommendations