Regulation of Pyridine Nucleotide Coenzyme Metabolism

  • K. Shibata
  • T. Hayakawa
  • H. Taguchi
  • K. Iwai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)


Four NAD biosynthetic pathways are known (Henderson, 1983): (I) Nicotinamide (Nam) → nicotinamide mononucleotide (NMN) →NAD; (II) nicotinic acid (NA) → nicotinic acid mononucleotide (NaMN) → nicotinic acid adenine dinucleotide (NaAD) → NAD; (III) Nam → NA → NaMN → NaAD → NAD; (IV) quinolinic acid (QA) → NaMN → NaAD → NAD.


Nicotinic Acid Catabolic Pathway Quinolinic Acid Dietary Protein Level Daily Urinary Excretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cantarow, W., and Stollar, B.D., 1977, Nicotinamide mononucleotide adenylyltransferase, a nonhistone chromatin protein, Arch. Biochem. Biophys., 180: 26–34.PubMedCrossRefGoogle Scholar
  2. Dietrich, L.S., Muniz, O., and Powanda, M., 1968, NAD synthesis in animal tissues, J. Vitaminol., 14: 123–129.CrossRefGoogle Scholar
  3. Hayakawa, T., Shibata, K., and Iwai, K., 1984a, Purification and some properties of nicotinate phosphoribosyltransferase from hog liver, Agric. Biol. Chem., 48: 445–453.CrossRefGoogle Scholar
  4. Hayakawa, T., Shibata, K., and Iwai, K., 1984b, Nicotinate phosphoribosyltransferase from hog liver: regulatory effect of ATP at physiological concentrations of 5-phosphoribosyl-1-pyrophosphate, Agric. Biol. Chem., 48: 455–460.CrossRefGoogle Scholar
  5. Henderson, L.M., 1983, Niacin, Aim. Rev. Nutr., 3: 289–307.CrossRefGoogle Scholar
  6. Ijichi, H., Ichiyama, A., and Hayaishi, O., 1966, Studies on the biosynthesis of nicotinamide adenine dinucleotide. III. Comparative in vivo studies on nicotinic acid, nicotinamide and quinolinic acid as precursors of nicotinamide adenine dinucleotide, J. Biol. Chem., 241: 3701–3707.PubMedGoogle Scholar
  7. Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y., and Hayaishi, O., 1965, Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals, J. Biol. Chem., 240: 1395–1401.PubMedGoogle Scholar
  8. Lee, Y.C., McKenzie, R.M., Gholson, R.K., and Raica, N., 1972, A comparative study of the metabolism of nicotinamide and nicotinic acid in normal and germ-free rats, Biochim. Biophys. Acta, 264: 59–64.PubMedCrossRefGoogle Scholar
  9. Petrack, B., Greengard, P., Craston, A., and Sheppy, F., 1965, Nicotinamide deamidase from mammalian liver, J. Biol. Chem., 240: 1725–1730.PubMedGoogle Scholar
  10. Pullman, M.E., and Colowick, S.P., 1954, Preparation of 2-and 6-pyridones of N1methylnicotinamide, J. Biol. Chem., 206: 121–127.PubMedGoogle Scholar
  11. Shibata, K., 1986, Nutritional factors affecting the activity of liver nicotinamide methyltransferase and urinary excretion of N1-methylnicotinamide in rats, Agric. Biol. Chem., 50: 1489–1493.CrossRefGoogle Scholar
  12. Shibata, K., 1987a, The metabolism of niacin in each organ and the biological method for assessing the nutritional status in the rat, Vitamins, 61: 39–56.Google Scholar
  13. Shibata, K., 1987b, Ultramicro-determination of N1methylnicotinamide in urine by high-performance liquid chromatography, Vitamins, 61: 599–604.Google Scholar
  14. Shibata, K., 1988a, Micro-determination of nicotinamide and its metabolites by high-performance liquid chromatography, Vitamins, 62: 225–233.Google Scholar
  15. Shibata, K., 1988b, Simultaneous measurement of nicotinic acid and its major metabolites, nicotinuric acid in blood and urine by a reversed-phase highperformance liquid chromatography, Agric. Biol. Chem., 52: 2973–2976.CrossRefGoogle Scholar
  16. Shibata, K., 1989a, High-performance liquid Chromatographie measurement of nicotinamide N-oxide in urine after extraction with chloroform, Agric. Biol. Chem., 53: 1329–1331.CrossRefGoogle Scholar
  17. Shibata, K., 1989b, Fate of excess nicotinamide and nicotinic acid differs in rats, J. Nutr., 119: 892–895.PubMedGoogle Scholar
  18. Shibata, K., 1989c, Tissue distribution of N1methyl-2-pyridone-5-carboxamide-and N1-methyl-4-pyridone-3-carboxamide-forming N1-methylnicotinamide oxidase in rats, Agric. Biol. Chem., 53: 3355–3356.CrossRefGoogle Scholar
  19. Shibata, K., Hayakawa, T., and Iwai, K., 1986, Tissue distribution of the enzymes concerned with the biosynthesis of NAD in rats, Agric. Biol. Chem., 50: 3037–3041.CrossRefGoogle Scholar
  20. Shibata, K., and Iwai, K., 1980, Effect of 5-phosphoribosyl-1-pyrophosphate from hog kidney and hog liver, Agric. Biol. Chem., 44: 2785–2791.CrossRefGoogle Scholar
  21. Shibata, K., Kawada, T., and Iwai, K., 1988a, Simultaneous microdetermination of nicotinamide and its major metabolites, N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-pyridone-3-carboxamide, by high-performance liquid chromatography, J. Chromat., 424: 23–28.CrossRefGoogle Scholar
  22. Shibata, K., and Matsuo, H., 1989a, Effect of supplementing low protein diets with the limiting amino acids on the excretion of N1-methylnicotinamide and its pyridone in rats, J. Nutr., 119: 896–901.PubMedGoogle Scholar
  23. Shibata, K., and Matsuo, H., 1989b, Effect of dietary soy protein isolate level on the ratio of N1methyl-2-pyridone-5-carboxamide plus N1methyl-4-pyridone-3-carboxamide to N1-methylnicotinamide excretion in rats, Agric. Biol. Chem., 53: 1003–1007.CrossRefGoogle Scholar
  24. Shibata, K., and Matsuo, H., 1989c, Correlation between niacin equivalent intake and urinary excretion of its metabolites, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, in humans consuming a self-selected food, Am. J. Clin. Nutr., 50: 114–119.PubMedGoogle Scholar
  25. Shibata, K., Matsuo, H., and Iwai, K., 1987, Non-uniform decrease of nicotinamide in various tissues of rats fed on a niacin-free and tryptophanlimited diet, Agric. Biol. Chem., 51: 3429–3430.CrossRefGoogle Scholar
  26. Shibata, K., and Murata, K., 1982, Niacin requirement depending on tryptophan level of diet in rat, Vitamins 56: 469–477.Google Scholar
  27. Shibata, K., and Murata, K., 1986, Blood NAD as an index of niacin nutrition, Nutr. Int., 2: 177–181.Google Scholar
  28. Shibata, K., Taguchi, H., and Iwai, K., 1988b, Effects of dietary protein levels on the enzyme activities involved in tryptophan-niacin metabolism in rats, Agric. Biol. Chem., 52: 3165–3167.CrossRefGoogle Scholar
  29. Shibata, K., Taguchi, H., Nishitani, H., Okumura, K., Shimabayashi, Y., Matsushita, N., and Yamazaki, H., 1989, End product inhibition of the activity of nicotinamide phosphoribosyltransferase from various tissues of rats by NAD, Agric. Biol. Chem., 53: 2283–2284.CrossRefGoogle Scholar
  30. Taguchi, H., Inamori, K., Muto, H., Okumura, K., and Shimabayashi, Y., 1988, Distribution and fundamental properties of nicotinamidase, Vitamins, 62: 399–406.Google Scholar
  31. Taguchi, H., and Iwai, K., 1975, The isolation and physico-chemical properties of crystalline quinolinate phosphoribosyltransferase from hog liver, Agric. Biol. Chem., 39: 1493–1500.CrossRefGoogle Scholar
  32. Taguchi, H., Yamada, H., Ishihara, N., Okumura, K., and Shimabayashi, Y., 1987, Distribution and fundamental properties of nicotinate methyltransferase, Vitamins, 61: 355–360.Google Scholar
  33. Tanigawa. Y., Shimoyama, M., Murashima, R., Ito, T., Yamaguchi, Y., and Ueda, I., 1970, The role of microorganisms as a function of nicotinamide deamidation, Biochim. Biophys. Acta, 201: 394–397.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. Shibata
    • 1
  • T. Hayakawa
    • 2
  • H. Taguchi
    • 3
  • K. Iwai
    • 4
  1. 1.Teikoku Women’s University MoriguchiOsaka 570Japan
  2. 2.Toyko University of AgricultureTokyo 156Japan
  3. 3.Mie University TsuMie 514Japan
  4. 4.Kobe Women’s UniversityKobe 654Japan

Personalised recommendations