Advertisement

Relationships Between Pteridine Synthesis and Tryptophan Degradation

  • E. R. Werner
  • G. Werner-Felmayer
  • D. Fuchs
  • A. Hausen
  • G. Reibnegger
  • H. Wachter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)

Abstract

In 1979, a fluorescent substance occurring in increased amounts in urinary specimens of patients suffering from viral infections or malignant diseases was characterized as D-erythro-neopterin (neopterin; Wachter et al. 1979). Extended studies of neopterin excretion in diseases revealed that the enhanced excretion of neopterin is coupled to clinical conditions characterized by activated cell-mediated immunity (reviewed by Fuchs et al., 1988; Wachter et al., 1989). Studies investigating the cellular background of these observations in vitro confirmed that immunological activation of the host’s peripheral blood mononuclear cells leads to release of neopterin into the culture medium. Surprisingly, large amounts of an unidentified fluorescent substance were always formed together with neopterin by the cells (Fuchs et al., 1982; Huber et al., 1983). The chemical identification of this substance as the tryptophan metabolite 3-hydroxyanthranilic acid (Werner et al., 1985a) initiated our work on the relationship between tryptophan degradation and pteridine synthesis, which is summarized in the present contribution.

Keywords

Anthranilic Acid Tryptophan Metabolism Tryptophan Degradation Dihydropteridine Reductase Normal Dermal Fibroblast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradford, M.M., 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72: 248–254.PubMedCrossRefGoogle Scholar
  2. Datta, S.P., Brown, R.R., Borden, E.C., Sondel, P.M., and Trump, D.L., 1987, Interferon and interleukin 2 induced changes of tryptophan and neopterin metabolism: possible markers for biologically effective doses, Proc. Am. Assoc. Cancer Res., 28: 338.Google Scholar
  3. Fuchs, D., Hausen, A., Huber, C., Margreiter, R., Reibnegger, G., Spielberger, H., and Wachter, H., 1982, Pteridine secretion as a marker for the proliferation of alloantigen-induced lymphocytes, Hoppe-Seyler’s Z. Physiol. Chem., 363: 661–664.PubMedCrossRefGoogle Scholar
  4. Fuchs, D., Hausen, A., Reibnegger, G., Werner, E.R., Dierich, M.P., and Wachter, H., 1988, Neopterin as a marker for activated cell-mediated immunity: application in HIV-infection, Immunol. Today, 9: 150–155.PubMedCrossRefGoogle Scholar
  5. Huber, C., Batchelor, J.R., Fuchs, D., Hausen, A., Lang, A., Niederwieser, D., Reibnegger, G., Swetly, P., Troppmair, Jr. M., and Wachter, H., 1984, Immune response associated production of neopterin: release from macrophages primarily under control of interferon-gamma, J. Exp. Med., 160: 310–31PubMedCrossRefGoogle Scholar
  6. Huber, C., Fuchs, D., Hausen, A., Margreiter, R., Reibnegger, G., Spielberger, M., and Wachter, H., 1983, Pteridines as a new marker to detect human T-cells activated by allogeneic or modified self major histocompatibility complex (MHC) determinants, J. Immunol., 130: 1047–1050.PubMedGoogle Scholar
  7. Kaufman, S., 1986, The metabolic role of tetrahydrobiopterin, in: “Chemistry and Biology of Pteridines”, Cooper, B.A., and Whitehead, V.M., eds., de Gruyter, Berlin, pp. 185–200.Google Scholar
  8. Musajo, L., Benassi, C.A., and Parpajola, A., 1955, Isolation of kynurenine and 3-hydroxykynurenine from human pathological urine, Nature, 175: 855–856.PubMedCrossRefGoogle Scholar
  9. Nichol, C.A., Smith, G.K., and Duch, D.S., 1985, Biosynthesis and metabolism of tetrahydrobiopterin and molybdopterin, Ann. Rev. Biochem., 54: 729–764.PubMedCrossRefGoogle Scholar
  10. Nishikimi, M., 1975, A function of tetrahydropteridines as cofactors for indoleamine 2,3-dioxygenase, Biochem. Biophys. Res. Commun., 63: 92–98.PubMedCrossRefGoogle Scholar
  11. Ozaki, Y., Edelstein, M.P., and Duch, D.S., 1988, Induction of indoleamine 2,3-dioxygenase: a mechanism for the antitumor activity of interferongamma, Proc. Natl. Acad. Sci. USA, 85: 1242–1246.PubMedCrossRefGoogle Scholar
  12. Ozaki, Y., Nichol, C.A., and Duch, D.S., 1987, Utilization of Superoxide anion for the decyclization of L-tryptophan by murine epididymal indoleamine 2,3-dioxygenase, Arch. Biochem. Biophys., 257: 207–216.PubMedCrossRefGoogle Scholar
  13. Ozaki, Y., Reinhard, J.F. Jr., and Nichol, C.A., 1986, Cofactor activity of dihydroflavin mononucleotide and tetrahydrobiopterin for murine epididymal indoleamine 2,3-dioxygenase, Biochem. Biophys. Res. Commun., 137: 1106–1111.CrossRefGoogle Scholar
  14. Pfefferkorn, E.R., 1984, Interferon-gamma blocks the growth of toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan, Proc. Natl. Acad. Sci. USA, 81: 908–912.PubMedCrossRefGoogle Scholar
  15. Shen, R.S., Alam, A., and Zhang, Y., 1988, Inhibition of GTP-cyclohydrolase I by pterins, Biochim. Biophys. Acta, 965: 9–15.PubMedCrossRefGoogle Scholar
  16. Takikawa, O., Kuroiwa, T., Yamazaki, F., and Kido, R., 1988, Mechanism of interferon-gamma action: characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme mediated tryptophan degradation in its anticellular activity, J. Biol. Chem., 263: 2041–2048.PubMedGoogle Scholar
  17. Viveros, H.O., Lee, C.L., Abou-Donia, M.M., Nixon, J.C., and Nichol, C.A., 1981, Biopterin cofactor biosynthesis: independent regulation of GTP-cyclohydrolase in adrenal medulla and cortex, Science, 213: 349–350.PubMedCrossRefGoogle Scholar
  18. Wachter, H., Fuchs, D., Hausen, A., Reibnegger, G., and Werner, E.R., 1989, Neopterin as a marker for the activation of cellular immunity: immunologie basis and clinical application, Adv. Clin. Chem., 27: 81–141.PubMedCrossRefGoogle Scholar
  19. Wachter, H., Hausen, A., and Grassmayr, K., 1979, Increased urinary excretion of neopterin in patients with malignant tumors and with virus diseases, Hoppe Seyler’s Z. Physiol. Chem., 360: 1957–1960.PubMedGoogle Scholar
  20. Werner, E.R., Bitterlich, G., Fuchs, D., Hausen, A., Reibnegger, G., Szabo G., Dierich, M.P., and Wachter, H., 1987a, Human macrophages degrade tryptophan upon induction by interferon-gamma, Life Sci., 41: 273–280.PubMedCrossRefGoogle Scholar
  21. Werner, E. R., Fuchs, D., Hausen, A., Jaeger, H., Reibnegger, G., Werner-Felmayer, G., Dierich, M.P., and Wachter, H., 1988b, Tryptophan degradation in patients infected by human immunodeficiency virus, Biol. Chem. Hoppe-Seyler, 369: 337–340.PubMedCrossRefGoogle Scholar
  22. Werner, E.R., Fuchs, D., Hausen, A., Lutz, H., Reibnegger, G., and Wachter, H., 1985b, Interferon-gamma induced in vitro excretion of neopterin and 3-hydroxyanthranilic acid by human macrophages, In: “Biochemical and Clinical Aspects of Pteridines”, Wachter, H., Curtius, H.C., and Pfleiderer, W., eds., de Gruyter, Berlin, pp. 473–486.Google Scholar
  23. Werner, E.R., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, T., 1987c, Simultaneous determination of neopterin and creatinine in serum with solid phase extraction and on-line elution liquid chromatography, Clin. Chem., 33: 2028–2033.PubMedGoogle Scholar
  24. Werner, E.R., Hirsch-Kaufmann, M., Fuchs, D., Hausen, A., Reibnegger, G., Schweiger, M., and Wachter, H., 1987b, Interferon-gamma induced degradation of tryptophan by human cells in vitro, Biol. Chem. Hoppe Seyler, 368: 1407–1412.PubMedCrossRefGoogle Scholar
  25. Werner, E.R., Lutz, H., Fuchs, D., Hausen, A., Huber, C., Niederwieser, D., Pfleiderer, W., Reibnegger, G., Troppmair, J., and Wachter, H., 1985a, Identification of 3-hydroxyanthranilic acid in mixed lymphocyte cultures, Biol. Chem. Hoppe Seyler, 366: 99–102.PubMedCrossRefGoogle Scholar
  26. Werner, E.R., Werner-Felmayer, G., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, H., 1988a, Influence of Interferon-gamma and extracellular tryptophan on indoleamine 2,3-dioxygenase activity in T 24 cells as determined by a non-radiometrie assay, Biochem. J., 256: 537–541.PubMedGoogle Scholar
  27. Werner-Felmayer, G., Werner, E.R., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, H., 1989, Characteristics of Interferon-induced tryptophan metabolism in human cells in vitro. Biochim. Biophys. Acta, 1012: 140–147.PubMedCrossRefGoogle Scholar
  28. Werner-Felmayer, G., Werner, E.R., Fuchs, D., Hausen, A., Reibnegger, G., and Wachter, H., Induction of indoleamine 2,3-dioxygenase in human cells in vitro, this volume.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • E. R. Werner
    • 1
  • G. Werner-Felmayer
    • 1
  • D. Fuchs
    • 1
  • A. Hausen
    • 1
  • G. Reibnegger
    • 1
  • H. Wachter
    • 1
  1. 1.Institute of Medical Chemistry and BiochemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations