Retro-, Intro- and Perspectives of Trypto-Fun

  • B. Witkop
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 294)


“I have a feeling, Dale, that if we can find the meaning of a color reaction like that [the reaction of Adamkiewicz], it may open up a way to new knowledge of the structure of the old protein molecule itself”. Shortly after Hopkins had said these words to his student Henry Dale (1948), he identified glyoxylic acid as the contaminant needed to give the blue color with commercial acetic acid and strong sulfuric acid, known now as the Hopkins-Cole-Adamkiewicz reaction, with most proteins. In 1901, he isolated the chromogenic protein constituent and named it (−)-tryptophan (Hopkins and Cole, 1901), after R. Neumeister who in 1890 observed it in impure form on digestion of protein with trypsin.


Indole Alkaloid PYridoxal Phosphate Glyoxylic Acid Lysergic Acid Xanthurenic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albuquerque, E.X., Alkondon, M., Deshpande, S.S., Cintra, W.M., Aracava, Y., and Brossi, A., 1988, The role of carbamates and oximes in reversing toxicity of organophosphorus compounds: a perspective into mechanisms, in: “Elsevier Science Publications”, Vol. 26, Elsevier, Amsterdam.Google Scholar
  2. Bender, D.A., 1982, “Biochemistry of Tryptophan in Health and Disease”, Molecular Aspects of Medicine, Pergamon Press, pp. 103–197.Google Scholar
  3. Bradley, P., 1987, 5-HT2 receptors in the brain, Nature, 330.Google Scholar
  4. Braestrup, E., Nielson, M., and Olsen, C.E., 1980, Proc. Nat. Acad. Sci. USA, 77: 2288.PubMedCrossRefGoogle Scholar
  5. Brossi, A., Schönenberger, B., Clark, O.E., and Ray, R., 1988, Inhibition of acetylcholinesterase from electric eel by (−)-and (+)-physostigmine and related compounds, FEBS Lett., 201: 190.CrossRefGoogle Scholar
  6. Dale, H., 1948, Frederick Gowland Hopkins, Obituary Notices, Proc. Royal Soc, A: 114.Google Scholar
  7. Daly, J.W., Jerina, D.M., and B. Witkop, 1972, Arene oxides and the NIH shift: The metabolism, toxicity and carcinogenicity of aromatic compound, Experientia, 28: 1129.PubMedCrossRefGoogle Scholar
  8. Daly, J.W., Mauger, A.B., Yonemitsu, O., Antonov, V.K., Takase, K., and B. Witkop, 1967, Biochemistry, 6: 648.PubMedCrossRefGoogle Scholar
  9. Duine, J.A., and Jongejan, J.A., 1989, Ann. Rev. Biochem., 58: 403–426.PubMedCrossRefGoogle Scholar
  10. Duine, J.A., 1989, Pyrroloquinoline quinone (PQQ): a novel redox cofactor, in: “Vitamins and Hormones”, in press.Google Scholar
  11. Elk, A., and B. Witkop, 1953, J. Amer. Chem. Soc, 75: 500.CrossRefGoogle Scholar
  12. Fozard, J.R., 1987, 5-HT: The enigma variations, Trends Pharmacol. Sci., 8: 501.CrossRefGoogle Scholar
  13. Freter, K., Axelrod, J., and B. Witkop, 1957, J. Amer. Chem. Soc, 79: 3191.CrossRefGoogle Scholar
  14. Gaddum, J.H., and Picarelli, Z.P., 1957, Brit. J. Pharmacol., 12: 323.PubMedGoogle Scholar
  15. Groen, B.W., van der Meer, R.A., and Duine, J.A., 1988, FEBS Lett., 237: 98.PubMedCrossRefGoogle Scholar
  16. Gross, E., and Witkop, B., 1965, Gramicidin. IX. The preparation of gramicidine A, B and C, Biochemistry 4: 2495.CrossRefGoogle Scholar
  17. Hartig, P.R., 1989, Molecular biology of 5-HT receptors, Trends Pharmacol. Sci., 10: 64.PubMedCrossRefGoogle Scholar
  18. Hino, T., and Nakagawa, M., 1988, “The Alkaloids”, Academic Press, New York.Google Scholar
  19. Hopkins, F. G., and S. W. Cole, 1901, 1903, J. Physiol., 27: 418; 29:451.PubMedGoogle Scholar
  20. Hopkins, F. G., 1889, Proc. Chem. Soc, 5: 117.Google Scholar
  21. Kawabuchi, M., Boyne, A.F., Deshpande, S.S., Cintra, W.M., Brossi, A., and Albuquerque, E.X., 1988, Enantiomer (+)-physostigmine prevents organophosphate-induced subjunctional damage at the neuromuscular synapse by a mechanims not related to cholinesterase carbamylation, Synapse, 2: 139.PubMedCrossRefGoogle Scholar
  22. Kilpatrick, G.J., Jones, B.J., and Tyers, M.B., 1987, Identification and distribution of 5HT3-receptors in rat brain using radioligand binding, Nature, 330: 746.PubMedCrossRefGoogle Scholar
  23. Llinas, R., and Volkind, R.A., 1973, Exp. Brain Res., 18: 69.PubMedCrossRefGoogle Scholar
  24. Neuner, A., and Tappeiner, H., 1894, Arch. exp. Pathol. Pharmacol., 35, I: 69.CrossRefGoogle Scholar
  25. Ozaki, M., Weissbach, H., Azaki, A., Witkop, B., and Udenfriend, S., 1960, J. Med. Pharm. Chem., 2: 591.PubMedCrossRefGoogle Scholar
  26. Phillips, R.S., Miles, E.W., and L. A. Cohen, 1985, Differential inhibitions of tryptophan synthase and of tryptophanase by the two diastereoisomers of 2,3-dihyro-L-tryptophan: implications for the stereochemistry of the reaction intermediates, J. Biol. Chem., 260: 14665.PubMedGoogle Scholar
  27. Rebek, Jr., J., Tai, D.F., and Y. K. Shue, 1984, J. Amer. Chem. Soc, 106: 1813.CrossRefGoogle Scholar
  28. Renson, J., Daly, J.W., Witkop, B., and Udenfriend, S., 1966, Biochem. Biophys. Res. Comm., 5: 504.CrossRefGoogle Scholar
  29. Richter, C., 1988, Do mitochondrial DNA fragments promote cancer and aging?, FEBS Lett., 241: 1.PubMedCrossRefGoogle Scholar
  30. Roy, M., Miles, E.W., Phillips, R.S., and M. F. Dunn, 1988, Biochemistry, 27: 8661.PubMedCrossRefGoogle Scholar
  31. Robinson, R., and Stephen, S., 1948, Nature, 162: 177.PubMedCrossRefGoogle Scholar
  32. Salemme, F.R., 1988, Structural polymorphism in transmembrane channels, Science, 241: 145 & 230.PubMedCrossRefGoogle Scholar
  33. Sarges, R., and Witkop, B., 1965, Gramicidin, VI. The synthesis of valineand isoleucine-gramicidin A. J. Amer. Chem. Soc, 87: 2020.CrossRefGoogle Scholar
  34. Udenfriend, S., Clark, C.T., and Titus, E., 1953, 5-Hydroxytryptophan decarboxylase: a new route of metabolism of tryptophan, J. Amer. Chem. Soc, 75: 501.CrossRefGoogle Scholar
  35. van der Meer, R.A., Groen, B.W., and Duine, J.A., 1989, On the biosynthesis of free and covalently bound PQQ glutamic acid decarboxylase from Escherichia coli is a pyridoxo-quinoprotein, FEBS Lett., 246: 109–122.PubMedCrossRefGoogle Scholar
  36. Waiden, P., 1941, “Geschichte der Organischen Chemie seit 1880”, Julius Springer, Berlin.Google Scholar
  37. Wallace, B.A., and Ravikumar, K., 1988, The Gramicidin pore: crystal structure of a cesium complex, Science, 241: 182.PubMedCrossRefGoogle Scholar
  38. Wieland, H., and Horner, L., 1937, Liebigs Ann., 528: 75.Google Scholar
  39. Wieland, H., and Horner, L., 1938, Synthese des 5,6-Pyrro-chinolins, Liebigs Ann., 536: 89.Google Scholar
  40. Wieland, H., and Schopf, C., 1925, Ber., 58: 2178.Google Scholar
  41. Wieland, H., and Witkop, B., 1940, Liebigs Ann., 543: 171.Google Scholar
  42. Witkop, B., 1943, Liebigs Ann., 554: 83.Google Scholar
  43. Witkop, B., 1948, The final structure came much later, J. Amer. Chem. Soc, 70: 1424; see J.E. Saxton, 1960, The alkaloids of gelsemium species, The Alkaloids 7:153.CrossRefGoogle Scholar
  44. Witkop, B., 1953, Studies on anhydronium bases, J. Amer. Chem. Soc, 75: 3361.CrossRefGoogle Scholar
  45. Witkop, B., 1983, Tradition und Thematik in der Naturstoffchemie, Naturwiss. Rundschau 36: 261; cf. T. Wieland, 1986, “Peptides of Poisonous Amanita Mushrooms”, Springer, New York, Berlin, Heidelberg.Google Scholar
  46. Woodward, R.B., and Witkop, B., 1949, The structure of sempervirine, J. Amer. Chem. Soc, 71: 379.Google Scholar
  47. Yonemitsu, O., Cerutti, P., and B. Witkop, 1966, J. Amer. Chem. Soc, 88: 3941.CrossRefGoogle Scholar
  48. Yu, Q.S., and Brossi, A., 1988, Practical synthesis of unnatural (+)-physostigmine and carbamate analogues, Heterocycles 27: 745.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • B. Witkop
    • 1
  1. 1.Institute ScholarNational Institutes of HealthBethesdaUSA

Personalised recommendations