The Role of the IGFs in Myogenic Differentiation

  • K. A. Magri
  • D. Z. Ewton
  • J. R. Florini
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)


Myogenesis is an important aspect of developmental biology that has been actively investigated in cultured cells for nearly three decades. Interest has been heightened and activity more sharply focussed during the past few years by the discovery of a family of myogenesis controlling genes, which appear to play major roles in the aspect of myogenesis to be considered here: the terminal differentiation of proliferating myoblasts to form postmitotic myotubes in which a number of muscle-specific genes are expressed. Most attention on the control of this process has been concentrated on its negative regulation by medium components initially characterized loosely as „mitogens,“ but subsequently identified as Fibroblast Growth Factor (FGF) and Transforming Growth Factor-beta (TGF-ft). This laboratory has shown that the Insulinlike Growth Factors (IGFs), in contrast, are stimulators of myogenesis, and recent work suggests that autocrine/paracrine actions of the IGFs may play an important role in differentiation in low serum medium even when the exogenous growth factors are not added. Thus, initiation of myogenic differentiation in vitro requires not only the removal of inhibitors present in serum, but also the secretion or addition of stimulators of this process.


Satellite Cell Skeletal Muscle Cell Myogenic Differentiation Amino Acid Uptake Myoblast Differentiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adashi, E. Y., Resnick, C. E., Dercole, A. J., Svoboda, M. E., and Van Wyk, J. J., 1985, Insulin-like growth factors as in-traovarian regulators of granulosa cell growth and function, Endocr. Rev., 6:400.PubMedCrossRefGoogle Scholar
  2. Allen, R. E., and Boxhorn, L. K., 1989, Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor-I, and fibroblast growth factor, J. Cell. Physiol., 138:311.PubMedCrossRefGoogle Scholar
  3. Ball, E. H., and Sanwall, B. D., 1980, A synergistic effect of glucocorticoids and insulin on the differentiation of myoblasts, J. Cell. Physiol., 102:27.PubMedCrossRefGoogle Scholar
  4. Ballard, F. J., Read, L. C., Francis, G. L., Bagley, C. J., and Wallace, J. C., 1986, Binding properties and biological potencies of insulin-like growth factors in L6 myoblasts, Biochem. J., 233:223.PubMedGoogle Scholar
  5. Ballard, F. J., Ross, M., Upton, F. M., and Francis, G. L., 1988, Specific binding of insulin-like growth factors 1 and 2 to the type 1 and type 2 receptors respectively, Biochem. J., 249:721.PubMedGoogle Scholar
  6. Bassas, L., de Pablo, F., Lesniak, M., A., and Roth, J., 1987, The insulin receptors of chick embryo show tissue-specific structural differences which parallel those of the insulinlike growth factor I receptors, Endocrinology., 121:1468.PubMedCrossRefGoogle Scholar
  7. Baxter, R. C., 1988, The insulin-like growth factors and their binding proteins, Comp. Biochem. Physiol., 91B:229.Google Scholar
  8. Baxter, R. C., and Martin, J. L., 1989, Binding proteins for the insulin-like growth factors: structure, regulation and function, Progr. Growth. Factor. Res., 1:49.CrossRefGoogle Scholar
  9. Beck, F., Samani, N. J., Byrne, S., Morgan, K., Gebhard, R., Brammar, W. J., 1988, Histochemical localization of IGF-I and IGF-II mRNA in the rat between birth and adulthood, Development., 104:29.PubMedGoogle Scholar
  10. Beguinot, F., Kahn, C. R., Moses, A. C., and Smith, R. J., 1985, Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells, J. Biol. Chern., 260:1589 .Google Scholar
  11. Beguinot, F., Kahn, C. R., Moses, A. C., and Smith, R. J., 1986, The development of insulin receptors and responsiveness is an early marker of differentiation in the muscle cell line L6, Endocrinol., 18:446.CrossRefGoogle Scholar
  12. Beguinot, F., Formisano, P., Condorelli, G., Tramontano, D., Villone, G., Liquoro, D., Consiglio, E., and Aloj, S. M., 1988, The endogenous substrate for the IGF-I receptor kinase ppl75 in the FRTL-5 cell is a cytoskeleton-associated protein, Program, and. Abstracts,, the. Endocrine. Society., 1988: .Google Scholar
  13. Braun, T., Bober, E., Buschhausen-Denker, G. Kotz, S., Grzeschik, K.-H., and Arnold, H. H., 1989a, Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the myf gene products, EMBO. J., 8:3617.PubMedGoogle Scholar
  14. Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E., and Arnold, H. H., 1989b, A novel human muscle factor related to but distinct from myoDl induces myogenic conversion in 10T1/2 fibroblasts, EMBO. J., 8:701.PubMedGoogle Scholar
  15. Braun, T., Bober, E., Winter, B., Rosenthal, N.,and Arnold, H. H., 1990, Myf-6, a new member of the human gene family of myogenic determination factors: evidence for a gene cluster on chromosome 12, EMBO. J., 9:821.PubMedGoogle Scholar
  16. Brennan, T. J., and Olson, E. N., 1990a, Myogenin resides in the nucleus and acquires high affinity for a conserved enhancer element on heterodimerization, Genes. & Develop., 4:582.CrossRefGoogle Scholar
  17. Brennan, T. J., Edmondton, D. G., and Olson, E. N., 1990, Aberrant regulation of MyoDl contributes to the potentailly defective myogenic phenotype of BC3HI cells, J Cell. Biol. 110:929.PubMedCrossRefGoogle Scholar
  18. Burgering, B. M. T., Snijders, A. J., Maassen, J. A., van der Eb, A. J., and Bos, J. L., 1989, Possible involvement of normal p21 h-ras in the insulin/Insulinlike growth factor 1 signal transduction pathway, Mol. Cell. Biol., 9:4312.PubMedGoogle Scholar
  19. Davis, R. L., Weintraub, H., and Lassar, A. B., 1987, Expression of a single transfected cDNA converts fibroblasts to myoblasts, Cell., 51:987.PubMedCrossRefGoogle Scholar
  20. Davis, R. L., Cheng, P.-F., Lassar, A. B., and Weintraub, H., 1990, The myoD DNA binding domain contains a recognition code for muscle-specific gene activation, Cell., 60:733.PubMedCrossRefGoogle Scholar
  21. de la Haba, G., Cooper, G. W., and Elting, V., 1966, Hormonal requirements for myogenesis in vitro: insulin and somatotropin, Proc. Nat. Acad. Sci. USA., 56:1719.CrossRefGoogle Scholar
  22. DeVol, D. L., Rotwein, P., Sadow, J. L., Novakofski, J., and Bechtel, P. J., 1990, Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth, Am. J. Physiol. (Endocrinol. Metab)., 259:E89.PubMedGoogle Scholar
  23. De Vroede, M. A., Romanus, J. A., Standaert, M. L., Pollett, R. J., Nissley, S. P., Rechler, M. M. 1984. Interaction of insulin-like growth factors with a nonfusing mouse muscle cell line: binding, action, and receptor down-regulation. Endocrinol. 114:1917–192 9CrossRefGoogle Scholar
  24. Dodson, M. V., Allen, R. E., and Hossner, K. L., 1985, Ovine somatomedin, multiplication-stimulating activity, and insulin promote skeletal muscle satellite cell proliferation in vitro, Endocrinol., 117:2357.CrossRefGoogle Scholar
  25. Edmondson, D. G., and Olson, E. N., 1989, A gene with homology to the myc similarity region of myoDl is expressed during myogenesis and is sufficient to activate the muscle differentiation program, Genes. & Develop., 3:628.CrossRefGoogle Scholar
  26. Edwall, D., Schalling, M., Jennische, E., and Norstedt, G., 1989, Induction of insulin-like growth factor I messenger ribonucleic acid during regeneration of rat skeletal muscle, Endocrinol., 124: 820.CrossRefGoogle Scholar
  27. Elgin, R. G., Busby, W. H., Jr., and Clemmons, D. R., 1987, An insulin-like growth factor (IGF) binding protein enhances the biological response to IGF-I, Proc. Natl. Acad. Sci., 84:3254.PubMedCrossRefGoogle Scholar
  28. Endo, T., and Nadal-Ginard, B., 1986, Transcriptional and post-transcriptional control of c-myc during myogenesis: its mRNA remains inducible in differentiated cells and does not suppress the differentiated phenotype, Mol. Cell. Biol., 6:1412.PubMedGoogle Scholar
  29. Ewton, D. Z., and Florini, J. R., 1981, Effect of somatomedins and insulin on myoblast differentiation in vitro, Develop. Biol., 86:31.PubMedCrossRefGoogle Scholar
  30. Ewton, D. Z., Erwin, B. G., Pegg, A. E., and Florini, J. R., 1984, The role of polyamines in somatomedin-stimulated differentiation of L6 myoblasts, J. Cell. Physiol., 120:263.PubMedCrossRefGoogle Scholar
  31. Ewton, D. Z., Falen, S. L., and Florini, J. R., 1987, The type II IGF receptor has low affinity for IGF-I analogs: pleio-typic actions of IGFs on myoblasts are apparently mediated by the type I receptor, Endocrinology., 120:115.PubMedCrossRefGoogle Scholar
  32. Ewton, D. Z., Spizz, G., Olson, E. N., and Florini, J. R., 1988, Decrease in transforming growth factor-fl binding and action during differentiation in muscle cells, J. Biol. Chem., 263:4029.PubMedGoogle Scholar
  33. Florini, J. R., 1987, Hormonal control of muscle growth, Muscle. & Nerve., 7:577.CrossRefGoogle Scholar
  34. Florini, J. R., and Ewton, D. Z., 1981, Insulin acts as a somatomedin analog in stimulating myoblast growth in serum-free medium, In. Vitro., 17:763.PubMedCrossRefGoogle Scholar
  35. Florini, J. R., and Ewton, D. Z., 1990, Highly specific inhibition of IGF-I-stimulated differentiation by an antisense oligodeoxyribonucleotide to myogenin mRNA; no effects on other actions of IGF-I, J. Biol. Chem., Sub:.Google Scholar
  36. Florini, J. R., Ewton, D. Z., Evinger-Hodges, M. J., Falen, S. L., Lau, R.L., Regan, J. F., and Vertel, B. M., 1984, Stimulation and inhibition of myoblast differentiation by hormones, In. Vitro., 20:942.PubMedCrossRefGoogle Scholar
  37. Florini, J. R., Ewton, D. Z., Falen, S. L., and Van Wyk, J. J., 1986, Biphasic concentration dependency of the stimulation of myoblast differentiation by somatomedins, Am. J. Physiol. (Cell. Physiol)., 250:771.Google Scholar
  38. Florini, J. R., and Magri, K. A., 1989, Effects of growth factors on myogenic differentiation, Am. J. Physiol. (Cell. Physiol. 25)., 256:C701.PubMedGoogle Scholar
  39. Florini, J. R., Roberts, A. B., Ewton, D. Z., Falen, S. B., Flanders, K. C., and Sporn, M. B., 1986, Transforming growth factor-fi. A very potent inhibitor of myoblast differentiation, identical to the differentiation inhibitor secreted by buffalo rat liver cells, J. Biol. Chem., 261:16509.PubMedGoogle Scholar
  40. Gospodarowicz, D., Ferrara, N., Schweigerer, L., and Neufeld, G., 1987, Structural characterization and biological functions of fibroblast growth factor, Endocrine. Rev., 8:95.CrossRefGoogle Scholar
  41. Gossett, L. A., Zhang, W., and Olson, E. N., 1988, Dexamethasone-dependent inhibition of differentiation of C2 myoblasts bearing steroid-inducible N-ras oncogenes, J. Cell. Biol., 106:2127.PubMedCrossRefGoogle Scholar
  42. Gulve, E. A., and Dice, J. F., 1989, Regulation of protein synthesis and degradation in L8 myotubes. effects of serum, insulin, and insulin-like growth factors, Biochem. J., 260:377.PubMedGoogle Scholar
  43. Han, V. K., Hill, D. J., Strain, A. J., Towle, A. C., Lauder, J. M., Underwood, L. E., and Dercole, A. J., 1987, Identification of somatomedin/Insulin-like growth factor im-munoreactive cells in the human fetus, Pediatr. Res., 22:245.PubMedCrossRefGoogle Scholar
  44. Han, V. K., Lund, P. K., Lee, D. C., Dercole, A. J., 1988, Expression fo somatomedin/insulin-like growth factor messenger ribonucleic acids in the human fetus: identification characterization, and tissue distribution, J. Clin. Endocrinol. Metab., 66:422.PubMedCrossRefGoogle Scholar
  45. Harper, J. M., Soar, J. B., Buttery, P. J., 1987, Changes in protein metabolism of ovine primary muscle cultures on treatment with growth hormone, insulin, insulin-like growth factor I or epidermal growth factor, J. Endocrinol., 112:87.PubMedCrossRefGoogle Scholar
  46. Heino, J., and Massague, J., 1990, Cell adhesion to collagen and decreased myogenic gene expression implicated in the control of myogenesis by transforming growth factor ft, J. Biol. Chem., 265:10181.PubMedGoogle Scholar
  47. Hickey, R., Skoultchi, A., Gunning, P., and Kedes, L., 1986, Regulation of a human cardiac actin gene introduced into rat L6 myoblasts suggests a defect in their myogenic program, Mol. Cell. Biol., 6:3287.PubMedGoogle Scholar
  48. Hill, D. J., Crace, C. J., Strain, A. J., and Milner, R. D. G., 1986, Regulation of amino acid uptake and deoxyribonucleic acid synthesis in isolated human fetal fibroblasts and myoblasts: effect of human placental lactogen, somatomedin-C., multiplication-J. Clin. End. Metab., 62:753.CrossRefGoogle Scholar
  49. Hill, D. J., Clemmons, D. R., Wilson, S., Han, V. K., Strain, A. J., and Milner, R. D., 1989, Immunological distribution of one form of insulin-like growth factor (IGF)-binding protein and IGF peptides in human fetal tissues, J. Mol. Endocrinol., 2:31.PubMedCrossRefGoogle Scholar
  50. Hu, J. S., and Olson, E. N. during Terminal Differentiation, 1990, Functional receptors for transforming growth factor-B are retained by biochemically differentiated C2 myocytes in growth factor deficient medium containing EGTA, but down-regulated, J. Biol. Chem., 265:7914.PubMedGoogle Scholar
  51. Isgaard, J., Nilsson, A., Vikman, K., Isaksson, O. G., 1989, Growth hormone regulates the level of insulin-like growth factor-I mRNA in rat skeletal muscle, J. Endocrinol., 120:107.PubMedCrossRefGoogle Scholar
  52. Ishi, D. N., 1989, Relationship of insulin-like growth factor II gene expression in muscle to synaptogenesis, Proc. Natl. Acad. Sci. USA., 86:2898.CrossRefGoogle Scholar
  53. Janeczko, R. A., and Etlinger, J. D., 1984, Inhibition of intracellular proteolysis in muscle cultures by multiplication stimulating activity (MSA): comparison of effects of MSA and insulin on proteolysis, protein synthesis, amino, J. Biol. Chem., 259:6292.PubMedGoogle Scholar
  54. Jennische, E., and Hansson, H.-A., 1987, Regenerating skeletal muscle cells express insulin-like growth factor I, Acta. Physiol. Scand., 130:327.PubMedCrossRefGoogle Scholar
  55. Jennische, E., and Olivecrona, H., 1987, Transient expression of insulin-like growth factor I immunoreactivity in skeletal muscle cells during postnatal development in the rat, Acta. Physiol. Scand., 131:619.PubMedCrossRefGoogle Scholar
  56. Jennische, E., Skottner, A., and Hansson, H.A., 1987, Satellite cells express the trophic factor IGF-I in regenerating skeletal muscle, Acta. Physiol. Scand., 129:9.PubMedCrossRefGoogle Scholar
  57. Jennische, E., Skottner, A., and Hansson, H.A., 1987, Dynamic changes in isulin-like growth factor I immunoreactivity correlate to repair events in rat ear after freeze-thaw injury, Exper. Mol. Pathol., 47:193.CrossRefGoogle Scholar
  58. Kiess, W., Haskell, J. F., Greenstein, L. A., Miller, B. E., Aarons, A. L., Rechler, M. M., and Nissley, S. P., 1987, An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts, J. Biol. Chem., 262:12745.PubMedGoogle Scholar
  59. Konieczny, S. F., Drobes, B. L.,, Menke, S. L., and Taparowsky, E. J., 1989, Inhibition of myogenic differentiation by the H-ras oncogene is associated with the down regulation of the myoDl gene, Oncogene., 4:473.PubMedGoogle Scholar
  60. Konigsberg, I. R., 1971, Diffusion-mediated control of myoblast fusion, Develop. Biol., 26:133.PubMedCrossRefGoogle Scholar
  61. Kovacina, K. S., Steele-Perkins, G., and Roth, R. A., 1989, A role of the Insulin-like Growth Factor II/mannose-6-phos-phate receptor in the insulin-induced inhibition of protein catabolism, Molec. Endocrinol., 3:901.CrossRefGoogle Scholar
  62. Kumegawa, M., Ikeda, E., Hosoda, S., and Takuma, T., 1980, In vitro effects of thyroxine and insulin on myoblasts from chick embryo skeletal muscle, Develop. Biol., 79:493.PubMedCrossRefGoogle Scholar
  63. Lassar, A. B., Buskin, J. N., Lockshon, D., Davis, R. L., Apone, S., Hauschka, S. D., and Weintraub, H., 1989a, MyoD is a sequence specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer, Cell., 58:823.PubMedCrossRefGoogle Scholar
  64. Lassar, A. B., Thayer, M. J., Overell, R. W., and Weintraub, H., 1989b, Transformation by activated ras or fos prevents myogenesis by inhibiting expression of MyoDl, Cell., 58:659.PubMedCrossRefGoogle Scholar
  65. Lim, R. W., and Hauschka, S. D., 1984, A rapid decrease in epidermal growth factor-binding capacity accompanies the terminal differentiation of mouse myoblasts in vitro, J. Cell. Biol., 98:739.PubMedCrossRefGoogle Scholar
  66. Linkhart, T A., Clegg, C. H., Lim, R. W., Merrill, G. F., Chamberlain, J. S., and Hauschka, S. D., 1982, Control of mouse myoblast commitment to terminal differentiation by mitogens. in Pearson, M. L., and Epstein, H. F. (Eds): Molecular and Cellular Biology of Myogenesis. Cold. Springs. Harbor. Conf., 8:877.Google Scholar
  67. Loeb, J. N., and Strickland, S., 1987, Hormone binding and coupled response relationships in systems dependent on the generation of secondary mediators, Mol. Endocrinol., 1:75.PubMedCrossRefGoogle Scholar
  68. Mandel, J.L., and Pearson, M. L., 1974, Insulin stimulates myogenesis in a rat myoblast line, Nature., 251:618.PubMedCrossRefGoogle Scholar
  69. Massague, J., Cheifetz, S., Endo, T., and Nadal-Ginard, B., 1986, Type beta transforming growth factor is an inhibitor of myogenic differentiation, Proc. Natl. Acad. Sci. USA., 83:8206.PubMedCrossRefGoogle Scholar
  70. McCusker, R. H. and Clemmons, D. R., 1988, Insulin-like growth factor binding protein secretion by muscle cells: effect of cellular differentiation and proliferation, J. Cell. Physiol., 137 :505.PubMedCrossRefGoogle Scholar
  71. McCusker, R. H., Camacho-Hubner, C., and Clemmons, D. R., 1989, Identification of the types of insulin-like growth factor binding proteins that are secreted by muscle cells in vitro, J. Biol. Chem., 264:7795.PubMedGoogle Scholar
  72. Mellas, J., Gavin, J. R., and Hammesman, M. R., 1986, Multiplication-Stimulating Activity-induced alkalinization of canine renal proximal tubular cells, J. Biol. Chem., 261:14437.PubMedGoogle Scholar
  73. Miner, J. H., and Wold, B., 1990, Herculin, a fourth member of the myoD family of myogenic regulatory genes, Proc. Natl. Acad. Sci. USA., 87:1089.PubMedCrossRefGoogle Scholar
  74. Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M. C., Roth, R. A., and Rutter, W. J., 1987, Insulinlike growth factor-II receptor as a multifunctional binding protein, Nature., 329:301.PubMedCrossRefGoogle Scholar
  75. Multhauf, C., and Lough, J., 1986, Interferon-mediated inhibition of differentiation in a murine myoblast cell line, J. Cell. Physiol., 126:211.PubMedCrossRefGoogle Scholar
  76. Mulle, C., Benoit, P., Pinset, C., Roa, M., and Changeux, J.-P., 1988, Calcitonin gene-related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells, Proc. Natl. Acad. Sci. USA, 85:5728.PubMedCrossRefGoogle Scholar
  77. Murphy, L. J., Bell, G. I., Duckworth, M. L., and Friesen, H. G., 1987, Identification, characterization, and regulation of a rat complementary deoxyribonucleic acid which encodes insulin-like growth factor-I., Endocrinol., 121:684.CrossRefGoogle Scholar
  78. Murre, C., McCaw, P. S., and Baltimore, D., 1989a, A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, myoD, and myc proteins, Cell., 56:777.PubMedCrossRefGoogle Scholar
  79. Murre, C., Mccaw, P.S., Vaessin, H., Caudy, M., Jan, L.Y., Cabrera, C.V., Hauschka, S., Lassar, A.B., and Baltimore, D., 1989b, Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence, Cell., 58:537.PubMedCrossRefGoogle Scholar
  80. Olson, E. N., 1990, MyoD family: A paradigm for development?, Genes. & Develop., 4:1454.CrossRefGoogle Scholar
  81. Olson, E. N., Sternberg, E., Hu, J. S., Spizz, G., and Wilcox, C., 1986, Regulation of myogenic differentiation by type beta transforming growth factor, J. Cell. Biol., 103:1799.PubMedCrossRefGoogle Scholar
  82. Olwin, B. B., and Hauschka, S. D., 1988, Cell surface fibroblast growth factor and epidermal growth factor receptors are permanently lost during skeletal muscle terminal differentiation in culture, J. Cell. Biol., 107:761.PubMedCrossRefGoogle Scholar
  83. Ong, J., Yamashita, S., and Melmed, S., 1987, Insulin-like growth factor I induces c-fos messenger ribonucleic acid in L6 skeletal muscle cells, Endocrinology., 120:353.PubMedCrossRefGoogle Scholar
  84. Pinney, D. F., Pearson-White, S. H., Konieczny, S. F., Latham, K. E., and Emerson, C. P., Jr., 1988, Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway, Cell., 53:781.PubMedCrossRefGoogle Scholar
  85. Rahm, M., Jin., P., Sumegi, J., and Sejersen, T., 1989, Elevated c-fos expression inhibits differentiation of L6 rat myoblasts, J. Cell. Physiol., 139:237.PubMedCrossRefGoogle Scholar
  86. Rechler, M. M., and Nissley, S. P., 1985, The nature and regulation of the receptors for insulin-like growth factors, Ann. Rev. Physiol., 47:425.CrossRefGoogle Scholar
  87. Rhodes, S. J., Konieczny, S. F., 1990, Identification of MRF4: A new member of the muscle regulatory factor gene family, Genes &Develop, in pressGoogle Scholar
  88. Roberts, A. B., and Sporn, M. B. The Transforming Growth Factor-betas., 1990, in sporn, M. B.,and roberts, A. B. eds peptide growth factors and their receptors, vol 1. Handbook of Exptl Pharm vol 95. Springer Verlag, Heidelberg,., :419.Google Scholar
  89. Roeder, R.A., Thorpe, S. D., Byers, F. M., Schelling, G. T., and Gunn, J. M., 1986, Influence of anabolic agents on protein synthesis and degradation in muscle cells grown in culture, Growth., 50:485.PubMedGoogle Scholar
  90. Roeder, R. A., Hossner, K. L., Sasser, R. G., and Gunn, J. M., 1988, Regulation of protein turnover by recombinant human insulin-like growth factor-I in L6 myotube cultures, Horm. Metabol. Res., 220:698.CrossRefGoogle Scholar
  91. Rosen, K.M., Wentworth, B. M., Rosenthal, N., and Villa-Komaroff, L., manuscript in preparation.Google Scholar
  92. Rosenfeld, R. G., Pham, H., James, P., Shsh, R., Diaz, G., and wyche, J, 1987, Demonstration of a autocrine for insulinlike growth factor-II, medicated through the Type II receptor. (Abstract) Endocrinol. 120 (Suppl. 1): A89.Google Scholar
  93. Roth, R. A., 1988, Structure of the receptor for insulin-like growth factor II: the puzzle amplified, Science., 239:1269.PubMedCrossRefGoogle Scholar
  94. Schmid, Ch., Steiner, Th., and Froesch, E. R., 1983, Preferentiatial enhancement of myoblast differentiation by insulin-like growth factors (IGF-I and IGF-II) in primary cultures of chicken embryonic cells, FEBS. Letters., 161:117.PubMedCrossRefGoogle Scholar
  95. Schmid, C., Steiner, T., and Froesch, E. R., 1984, Isulin-like growth factor I supports differentiation of cultured os-teoblast-like cells, FEBS. Letters., 173:48.PubMedCrossRefGoogle Scholar
  96. Schneider, M. D., and Olson, E. N., 1988, Control of myogenic differentiation by cellular oncogenes, Molecular. Neurobiol., 2:1.CrossRefGoogle Scholar
  97. Schubert, D., Harris, J., Devine, C. E., and Heinemann, S., 1974, Characterization of a unique muscle cell line, J. Cell. Biol., 61:398.PubMedCrossRefGoogle Scholar
  98. Shimizu, M., Webster, C., Morgan, D. O., Blau, H. M., and Roth, R. A., 1986, Insulin and insulinlike growth factor receptors and responses in cultured human muscle cells, Am. J. Physiol., 251:E611.PubMedGoogle Scholar
  99. Spira, O., Atzmon, R., Rahamim, E., Bar-Shavit, R., Gross, J., Gordon, A., and Vlodavsky, I., 1988, Striated muscle fibers differentiate in primary cultures of adult anterior pituitary cells, Endocrinology., 122:3002.PubMedCrossRefGoogle Scholar
  100. Spizz, G., Roman, D., Strauss, A., and Olson, E. N., 1986, Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of cell proliferation, J. Biol. Chem., 261:9483.PubMedGoogle Scholar
  101. Stylianopoulou, F., Efstratiadis, A. Herbert, J., and Pintar, J., 1988, Pattern of the insulin-like growth factor II gene expression during rat embryogenesis, Development., 103:4 97.Google Scholar
  102. Tapscott, S. J., Davis, R. L., Thayer, M. J., Cheng, P.-F., Weintraub, H., and Lassar, A. B., 1988, MyoDl: A nuclear phosphoprotein requiring a myc homology region to convert fibroblasts to myoblasts, Science., 242:405.PubMedCrossRefGoogle Scholar
  103. Thayer, M. J., Tapscott, S. J., Davis, R. L., Wright, W. E., Lassar, A. B., and Weintraub, H., 1989, Positive autoregula-tion of the myogenic determination gene myoDl, Cell., 58:241.PubMedCrossRefGoogle Scholar
  104. Tollefsen, S. E., Lajara, R., McCusker, R. H., Clemmons, D. R., and Rotwein, P., 1989a, Insulin-like growth factors (IGF) in muscle development, expression of IGF-I, the IGF-I receptor, and an IGF binding protein during myoblast differentiation, J. Biol. Chem., 264:13810.PubMedGoogle Scholar
  105. Tollefsen, S. E., Sadow, J. L., and Rotwein, P., 1989b, Coordinate expression of insulin-like growth factor II and its receptor during muscle differentiation, Proc. Natl. Acad. Sci. USA., 86:1543.PubMedCrossRefGoogle Scholar
  106. Turner, J. D., Rotwein, P., Novakofski, J., Bechtel, P. J., 1988, Induction of mRNA for IGF-I and -II during growth hormone-stimulated muscle hypertrophy, Am. J. Physiol., 255:E513.PubMedGoogle Scholar
  107. Turo, K. A., and Florini, J. R., 1982, Hormonal stimulation of myoblast differentiation in the absence of DNA synthesis, Am. J. Physiol. (Cell. Physiol. 12)., 243:C278.Google Scholar
  108. Vaidya, T. B., Rhodes, S. J., Taparowsky, E. J., and Konieczny, S. F., 1989, Fibroblast growth factor and transforming growth factor 15 repress transcription of the myogenic regulatory gene myoDl, Mol. Cell. Biol., 9:3576.PubMedGoogle Scholar
  109. Wright, W. E., Sassoon, D. A., and Lin, V. K., 1989, Myogenin, a factor regulating-myogenesis, has a domain homologous to myoD, Cell., 56:607.PubMedCrossRefGoogle Scholar
  110. Yaffe, D., 1968, Retention of differentiation potentialities during prolonged cultivation of myogenic cells, Proc. Natl. Acad. Sci. USA., 61:477.PubMedCrossRefGoogle Scholar
  111. Yaffe, D., and Saxel, O., 1977, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscles, Nature. (London)., 270:725.PubMedCrossRefGoogle Scholar
  112. Yu, K.-T., and Czech, M. P., 1984, Tyrosine phosphorylation of the insulin receptor B subunit activates the receptor-associated tyrosine kinase activity, J. Biol. Chem., 259:5277.PubMedGoogle Scholar
  113. Zapf, J., Schoenle, E., Jagers, E., Sand, I., and Froesch, E. R., 1979, Inhibition of the actions of non-suppressible insulin-like activity on isolated fat cells by binding to its carrier protein, J. Clin. Invest., 63:1077.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • K. A. Magri
    • 1
  • D. Z. Ewton
    • 1
  • J. R. Florini
    • 1
  1. 1.Biology DepartmentSyracuse UniversitySyracuseUSA

Personalised recommendations