Advertisement

Insulin-Like Growth Factor II: Complexity of Biosynthesis and Receptor Binding

  • Steen Gammeltoft
  • Jan Christiansen
  • Finn C. Nielsen
  • Sten Verland
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)

Summary

Insulin-like growth factor II (IGF-II) belongs to the insulin family of peptides and acts as a growth factor in many fetal tissues and tumors. The gene expression of IGF-II is initiated at three different promoters which gives rise to multiple transcripts. In a human rhabdomyosarcoma cell line IN 157 IGF-II mRNAs of 6.0-kb, 4.8-kb, and 4.2-kb are present. Fractionation of cellular extracts on sucrose gradients and Northern blot analysis showed that only the 4.8-kb mRNA was associated with polysomes, whereas the other transcripts co-sedimented with monosomal particles. This suggests that only the 4.8-kb mRNA is translated to IGF-II. The cell line secretes two forms of immunoreactive and bioactive IGF-II to the medium of molecular size 10 kd and 7.5 kd which may be involved in autocrine control of cell growth. IGF-II binds to two receptors on the surface of many cell types: the IGF-I receptor and the mannose-6-phosphate (Man-6-P)/IGF-ll receptor. There is consensus that the cellular effects of IGF-II are mediated by the IGF-I receptor via activation of its intrinsic tyrosine kinase. The Man-6-P/IGF-ll receptor is involved in endocytosis of lysosomal enzymes and IGF-II. In selected cell types, however, Man-6-P induces cellular responses. We have studied rat brain neuronal precursor cells where Man-6-P acted as a mitogen suggesting that phosphomannosylated proteins may act as growth factors via the Man-6-P/IGF-ll receptor. In conclusion, the gene expression and mechanism of action of IGF-II is very complex suggesting that its biological actions can be regulated at different levels including the transcription, translation, posttranslational processing, receptor binding and intracellular signalling.

Keywords

Insulin Receptor Human Rhabdomyosarcoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, A. S., Kjeldsen, T., Wiberg, F. C., Christensen, P.M., Rasmussen J. S., Norris, K., Møller, K. B., and Møller N. P. H., 1990, Changing of the insulin receptor to possess insulin-like growth factor I ligand-specificity. Biochemistry, in print.Google Scholar
  2. Auletta, M., Nielsen, F. C, and Gammeltoft, S., 1990, Receptor-mediated endocytosis and degradation of insulin-like growth factors in neonatal rat astrocytes. J. Neuroscience Research, submitted.Google Scholar
  3. Ballotti, R., Nielsen, F. C, Pringle, N., Kowalski, A., Richardson, W. D., Van Obberghen, E., and Gammeltoft, S., 1987, Insulin-like growth factor I in cultured rat astrocytes: expression of the gene, and receptor tyrosine kinase. EMBO J.. 6:3633.PubMedGoogle Scholar
  4. Baumbach, G. A., Saunders, P. T. K., Bazer, F. W., and Roberts, R. M., 1984, Uteroferrin has N-asparagine-linked high-mannose-type oligosaccharides that contain mannose-6-phosphate. Proc. Natl. Acad. Sci. USA. 81: 2985.PubMedCrossRefGoogle Scholar
  5. Beguinot, F., Kahn, C. R., Moses, A. C., and Smith, R. J., 1985, Distinct biologically active receptors for insulin, insulin-like growth factor I, and insulin-like growth factor II in cultured skeletal muscle cells. J. Biol. Chem.. 260:15892.Google Scholar
  6. Blundell, T. L, Bedarkar, S., Rinderknecht, E., and Humbel, R. E., 1978, Insulinlike growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc. Natl. Acad. Sci. USA. 75:180.PubMedCrossRefGoogle Scholar
  7. Braulke, T., Tippmer, S., Neher, E., and Von Figura, K., 1989, Regulation of the mannose 6-phosphate/IGF II receptor expression at the cell surface by mannose 6-phosphate, insulin like growth factors and epidermal growth factor. EMBO J.. 8:686.Google Scholar
  8. Corvera, S., and Czech, M. P., 1985, Mechanism of insulin action on membrane protein recycling: a selective decrease in the phosphorylation state of insulin-like growth factor II receptors in the cell surface membrane. Proc. Natl. Acad. Sci. USA. 82:7314.PubMedCrossRefGoogle Scholar
  9. Czech, M. P., 1989, Signal transmission by the insulin-like growth factors. Cell, 59:235.PubMedCrossRefGoogle Scholar
  10. Dahms, N. M., Lobel, P., and Komfeld, S., 1989, Mannose 6-phosphate receptors and lysosomal enzyme targeting. J. Biol. Chem., 264:12115.PubMedGoogle Scholar
  11. Daughaday, W. H., Rotwein, P., 1989, Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum and tissue concentrations. Endocrine Rev., 10:68.CrossRefGoogle Scholar
  12. de Pagter-Holthuizen, P., Jansen, M., van der Kammen, R. A., van Schaik, F. M. A., and Sussenbach, J. S., 1988, Differential expression of the human insulin-like growth factor II gene. Characterization of the IGF-II mRNAs and mRNA encoding a putative IGF-ll-associated protein. Biochim. Biophys. Acta. 950:282.PubMedGoogle Scholar
  13. Ewton, D. Z., Falen, S. L, and Florini, J. R., 1987, The type II insulin-like growth factor (IGF) receptor has low affinity for IGF-I analogs: Pleiotypic actions of IGFs on myoblasts are apparently mediated by the type I receptor. Endocrinology. 120:115.PubMedCrossRefGoogle Scholar
  14. Faust, P. L, Chirgwin, J. M., and Komfeld, S., 1987,Renin, a secretory glycoprotein, acquires phosphomannosyl residues. J. Cell Biol., 105:1947.PubMedCrossRefGoogle Scholar
  15. Flier, J. S., Usher, P. A., Moses, A. C, 1986, Monoclonal antibody to the type I insulin-like growth factor (IGF-I) receptor blocks IGF-I receptor-mediated DNA synthesis: clarification of the mitogenic mechanisms of IGF-I and insulin in human skin fibroblasts. Proc. Natl. Acad. Sci. USA. 83:664.PubMedCrossRefGoogle Scholar
  16. Froesch, E. R., Schmid, C., Schwander, J., and Zapf, J., 1986, Actions of insulin-like growth factors. Ann. Rev. Physiol.. 47:443.CrossRefGoogle Scholar
  17. Frunzio, R., Chiariotti, L, Brown, A. L, Graham, D. E., Rechler, M. M., and Bruni, C. B., 1986, Structure and expression of the rat insulin-like growth factor II (rIGF-ll) gene. J. Biol. Chem.. 261:138.Google Scholar
  18. Gammeltoft, S., 1989, Insulin-like growth factors and insulin: gene expression, receptors and biological actions,in: “Peptide hormones as prohormones”, Martinez, ed., Ellis Horwood Limited, pp. 176–210.Google Scholar
  19. Gammeltoft, S., and van Obberghen, E., 1986, Protein kinase activity of the insulin receptor. Biochem. J.. 235:1.PubMedGoogle Scholar
  20. Gammeltoft, S., Haselbacher, G. K., Humbel, R. E., Fehlmann, M., and Van Obberghen, E., 1985, Two types of receptor for insulin-like growth factors in mammalian brain. EMBO J, 4:3407.PubMedGoogle Scholar
  21. Gray, A., Tarn, A. W., Dull, T. J., Hayflick, J., Pintar, J., Cavanee, W. K., Koufos, A., and Ullrich, A., 1987, Tissue-specific and developmentally regulated transcription of the insulin-like growth factor 2 gene. DNA. 6:283.PubMedCrossRefGoogle Scholar
  22. Grey, V., Rouyer-Fessard, C., Gammeltoft, S., Bourque, M., Morin, C., and Laburthe, M., 1991, IGF-ll/Man-6-P receptors are transiently increased in the rat distal intestinal epithelium after resection. Mol. Cell. Endocrinol.. in print.Google Scholar
  23. Hari, J., Pierce, S. B., Morgan, D. O., Sara, V., Smith, M. C., and Roth, R. A., 1987, The receptor for insulin-like growth factor II mediates an insulin-like response. EMBO J.. 6:3367.PubMedGoogle Scholar
  24. Haselbacher, G. K., and Humbel, R., 1982, Evidence for two species of insulinlike growth factor II (IGF-II and “big” IGF-II) in human spinal fluid. Endocrinology. 110:1822.PubMedCrossRefGoogle Scholar
  25. Hedley, P. E., Dalin, A. M., Engstromm, W., 1989, Developmental regulation of insulin like growth factor II gene expression in the pig. Cell Biol. Int. Reports. 13:857.CrossRefGoogle Scholar
  26. Herzog, V., Neumuller, W., Holzmann, B., 1987, Thyroglobulin, the major and obligatory exportable protein of thyroid follicle cells, carries the lysosomal recognition marker mannose-6-phosphate. EMBO J, 6:555.PubMedGoogle Scholar
  27. Humbel, R. E., 1984, Insulin-like growth factors, somatomedins, and multiplication stimulating activity: chemistry, in: “Hormonal proteins and peptides”, C.H. Li, ed., Academic Press, New York, pp. 57–59.Google Scholar
  28. Hylka, V. W., Teplow, D. B., Kent, S. B. H, and Straus, D. S.,1985, Identification of a peptide fragment from the carboxyl-terminal extension region (E-domain) of rat proinsulin-like growth factor-ll. J. Biol. Chem., 260:417.Google Scholar
  29. Kiess, W., Haskell, J. F., Lee, L, Greenstein, L. A., Miller, B. E., Aarons, A. L., Rechler, M. M., and Nissley, S. P., 1987, An antibody that blocks insulinlike growth factor (IGF) binding to the type II IGF receptor is neither an antagonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts. J. Biol. Chem., 262:12745.PubMedGoogle Scholar
  30. Lammers, R., Gray, Alane, Schlessinger, J., and Ullrich A., 1989, Differential signalling potential of insulin-and IGF-1 -receptor cytoplasmic domains. EMBO J, 8:1369.PubMedGoogle Scholar
  31. Lee, S.-J., and Nathans, D., 1988, Proliferin secreted by cultured cells binds to mannose 6-phosphate receptors. J. Biol. Chem.. 263:3521.PubMedGoogle Scholar
  32. Marquardt, H., Todaro, G. J., Hendersen, L. E., and Oroszlan, S., 1981, Purification and primary structure of a polypeptide with multiplication-stimulating activity from rat liver cell cultures. J. Biol. Chem.. 256:6859.PubMedGoogle Scholar
  33. Morgan, D. O., Edman, J. C., Standring, D. N., Fried, V. A., Smith, M.C., Roth, R. A., and Rutter, W. J., 1987, Insulin-like growth fartor II receptor as a multifunctional binding protein. Nature. 329:301.PubMedCrossRefGoogle Scholar
  34. Nielsen, F. C., and Gammeltoft, S., 1988, Insulin-like growth factors are mitogens for rat pheochromocytoma PC 12 cells. Biochem. and Biophys. Res. Com., 154:1018.CrossRefGoogle Scholar
  35. Nielsen, F. C., and Gammeltoft, S., 1990, Mannose-6-phosphate stimulates proliferation of neuronal precursor cells. FEBS Letters. 262:142.PubMedCrossRefGoogle Scholar
  36. Nielsen, F. C., Gammeltoft, S., and Christiansen, J., 1990,Translational discrimination of mRNAs coding for human insulin-like growth factor II. J. Biol. Chem.. 265: 13431.PubMedGoogle Scholar
  37. Nielsen, F. C., Wang, E., and Gammeltoft, S., 1990, Receptor binding, endocytosis, and mitogenesis of insulin-like growth factors I and II infetal rat brain neurons. J. Neurochem.. in press.Google Scholar
  38. Nielsen, F. C., Haselbacher, G. K., and Gammeltoft, S., 1991, Biosynthesis of insulin-like growth factor II in a human rhabdomyosarcoma cell line. Mol. Cell. Endocrinol., submitted.Google Scholar
  39. Nishimoto, I., Hata, Y., Ogata, E., and Kojuma, I., 1987, Insulin-like growth factor II stimulates calcium influx in compentent BALB/c 3T3 cells primed with epidermal growth factor. J. Biol. Chem., 262:12120.PubMedGoogle Scholar
  40. Oka, Y., Rozek, L. M., and Czech, M. P., 1985, Direct demonstration of rapid insulin-like growth factor II receptor internalizatioand recycling in rat adipocytes. J. Biol. Chem.. 260:9435.PubMedGoogle Scholar
  41. Okamoto, T., Katada, T., Murayama, Y., Ui, M., Ogata, E., and Nishimoto, I, 1990, A simple structure encodes G protein-activating function of the IGF-ll/Mannose 6-phosphate receptor. Cell, 62:709.PubMedCrossRefGoogle Scholar
  42. Polychronakos, C., Guyda, H. J., Patel, B., and Posner B. I., 1986, Increase in the number of type II insulin-like growth factor receptors during propylthiouracil-induced hyperplasia in the rat thyroid. Endocrinology. 119:1204.PubMedCrossRefGoogle Scholar
  43. Purchio, A. F., Cooper, J. A., Brunner, A. M., Lioubin, M. N., Gentry, L. E., Kovacina, K. S., Roth, R. A., and Marquardt, H., 1988, Identification of Mannose 6-phosphate in two asparagine-linked sugar chains of recombinant transforming growth factor-β1 precursor. J. Biol. Chem.. 263:14211.PubMedGoogle Scholar
  44. Rosen, O. M., 1990, Insulin-receptor approaches to studying protein kinase domain. Diabetes Care. 13:1990.Google Scholar
  45. Roth, R. A., 1988, Structure of the receptor for insulin-like growth factor II: the puzzle amplified. Science. 239:1269.PubMedCrossRefGoogle Scholar
  46. Schwartz, T. W., 1986, The processing of peptide precursors. Proline-directed arginyl cleavage and other monobasic processing mechanisms. FEBS Lett., 200:1.PubMedCrossRefGoogle Scholar
  47. Scott, C. D., and Baxter, R. C., 1990, Insulin-like growth factor-ll/Mannose-6-phosphate receptors are increased in hepatocytes from regenerating rat liver. Endocrinology. 126:2543.PubMedCrossRefGoogle Scholar
  48. Steiner, D. F., Quinn, P. S., Chan, S. J., Marsh, J., and Tager, H. S., 1980, Processing mechanisms in the biosynthesis of proteins. Ann. NY Acad. Sci., 343:1.PubMedCrossRefGoogle Scholar
  49. Sussenbach, J. S., 1989, The gene structure of the insulin-like growth factor family. Progress in Growth Factor Res , 1:331Google Scholar
  50. Ullrich, A., Bell, J. R., Chen, E. Y., Herrera, R., Petruzelli, L. M., Dull, T. J., Gray, A., Coussens, L, Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P. H., Grunfeld, C., Rosen, O. M., and Ramachandran, J., 1985, Human insulin receptor and its relationship to the tyrosine kianse family of oncogenes. Nature. 313:756.PubMedCrossRefGoogle Scholar
  51. Ullrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., Le Bon, T., Kathuria, S., Chen, E., Jacobs, S., Francke, U., Ramachandran, J., and Fujita-Yamaguchi, Y., 1986, Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specifiqity. EMBOJ,, 5:2503.PubMedGoogle Scholar
  52. Ullrich, A., and Schlessinger, J., 1990, Signal transduction by receptors with tyrosine kinase activity. Cell. 61:203.PubMedCrossRefGoogle Scholar
  53. Verland, S., and Gammeltoft, S., 1989, Functional receptors for insulin-like growth factors I and II in rat thymocytes and mouse thymoma cells. Mol. Cel. Endocrinol.. 67:207.CrossRefGoogle Scholar
  54. Verland, S., Nielsen, F: C., and Gammeltoft, S., 1990, Gamma-interferon induces expression of mannose-6-phosphate/insulin-like growth factor II receptor gene in rat thymocytes. Endocrinology, submitted.Google Scholar
  55. Von Figura, K., and Hasilik, A., 1986, Lysosomal enzymes and their receptors. Ann. Rev. Biochem., 55:167.CrossRefGoogle Scholar
  56. Yang, Y. W. H., Romanus, J. A., Liu, T. Y., Nissley, S. P., and Rechler, M. M., 1985a, Biosynthesis of rat insulin-like growth factor II. I. Immunochemical demonstration of A ~ 20-kilodalton biosynthesis precursor of rat insulinlike growth factor II in metabolically labelled BRL-3A rat liver cells. J. Biol. Chem.. 260:2570.PubMedGoogle Scholar
  57. Yu K.-T., Peters, M. A., and Czech, M. P., 1986, Similar control mechanisms regulate the insulin and type I insulin-like growth factor receptor kinases. J. Biol. Chem.. 261:11349.Google Scholar
  58. Zumstein, P. P., Lüthi, C., and Humbel, R. E., 1985, Amino acid sequence of a variant pro-form of insulin-like growth factor II. Proc. Natl. Acad. Sci.USA. 82:3169.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Steen Gammeltoft
    • 1
  • Jan Christiansen
    • 1
  • Finn C. Nielsen
    • 1
  • Sten Verland
    • 1
  1. 1.Department of Clinical ChemistryBispebjerg HospitalCopenhagen NVDenmark

Personalised recommendations