The Mammalian Brain Glucose Transport System

  • Sherin U. Devaskar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)


Glucose is an essential substrate for brain oxidative metabolism (1,2). Circulating glucose crosses the blood-brain barrier and accesses the brain parenchymal cells. Glucose, being a polar substance, crosses lipid bilayers of cell plasma membranes (3,4) by a saturable stereo-specific carrier system (2,5,6,7). This carrier system consists of a family of closely related membrane associated glycoproteins termed the glucose transporters (GTs) (8–15). In most tissues examined, the facilitative type of GTs transport glucose intracellularly. Besides intracellular transport, these GTs are capable of transcellular transport and transport of glucose outside the cell (16). Structurally they consist of 12 transmembraneous domains with the amino and carboxyl termini facing the cytoplasmic surface of the cell, and a glycosylation site on the exofacial domain located between the first and second transmembraneous segments (8,16). While there is considerable primary sequence homology between the different GT isomers, their tissue specific expression and Km varies based on the individual tissue’s glucose needs and function of the specific GT (16). Typically the facilitative GTs are classified into five major types: Glut 1 (erythrocyte/Hep G2/rat brain type; Km - 1–2 mM) (8,9) and Glut 3 (fetal skeletal muscle/brain/placenta type; Km - ?) (10) are the insulin-insensitive types, present almost ubiquitously in most tissues examined and are responsible mainly for the basal transport of glucose. Glut 2 (liver/pancreatic beta islet cell type; Km - 15 mM) is capable of bidirectional transfer of glucose and mainly located in hepatocytes and the pancreatic beta islet cells (11,12).


Glial Cell Glucose Transporter Cerebral Glucose Utilization Pancreatic Beta Islet Cell Brain Parenchymal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O.E. Owen, A.P. Morgan, H.G. Kemp, J. M. Sullivan, M.G. Herrera, and G.F. Cahill, Brain metabolism during fasting, J Clin Invest 46:1589–1959 (1967).PubMedCrossRefGoogle Scholar
  2. 2.
    H. Lund-Anderson, Transport of glucose from blood to brain, Physiol Rev 59:305–352 (1979).Google Scholar
  3. 3.
    T.J. Wheeler and P.C. Hinkle, The glucose transporter of mammalian cells, Ann Rev Physiol 47:503–517 (1985).CrossRefGoogle Scholar
  4. 4.
    J.E. Pessin and M.P. Czech, The Enzymes of Biological Membranes ,Plenum Publishing Co., New York (1985) (A.N. Matoosi, ed) Vol 2, pp 497–522.Google Scholar
  5. 5.
    C. Crone, Facilitated transfer of glucose from blood to brain tissue, J Physiol 181:103–113 (1965).PubMedGoogle Scholar
  6. 6.
    A. Gjedde, Modulation of substrate transport to the brain, Acta Neurol Scand 67:3–25 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    W.M. Pardridge, Brain metabolism: A perspective from the blood-brain barrier, Physiol Rev 63:1481–1535 (1983).PubMedGoogle Scholar
  8. 8.
    M. Mueckler, C. Caruso, S.A. Baldwin, M. Panico, I. Blench, H.R. Morris, W.J. Allard, G.E. Leinhard, and H.F. Lodish, Sequence and structure of a human glucose transporter, Science 229:941–945 (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M.J. Birnbaum, H.C. Haspel, and O.M. Rosen, Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein, Proc Natl Acad Sci USA 83:5784–5788 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Kayano, H. Fukumoto, R.L. Eddy, Y-S Fan, M. Byers, T.B. Shows, and G.I. Bell, Evidence for a family of human glucose transporter-like proteins: Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues, J Biol Chem 263:15245–15248 (1988).PubMedGoogle Scholar
  11. 11.
    H. Fukumoto, S. Seino, H. Imura, Y. Seino, R.L. Eddy, Y. Fukushima, M.G. Byers, T.B. Shows, and G.I. Bell, Proc Natl Acad Sci USA 85:5434–5438 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    M.A. Permutt, L. Koranyi, K. Keller, P.E. Lacy, D.W. Scharp, and M. Mueckler, Cloning and functional expression of a human pancreatic islet glucose transporter cDNA, Proc Natl Acad Sci USA 86:8688–8692 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    D.E. James, M. Strubbe, and M. Mueckler, Molecular cloning and characterization of an insulin-regulatable glucose transporter, Nature (Lond) 338:83–87 (1989).CrossRefGoogle Scholar
  14. 14.
    H. Fukumoto, T. Kayano, J.B. Buse, Y. Edwards, P.F. Pilch, G.I. Bell, and S. Seino, Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin responsive tissues, J Biol Chem 264:7776–7779 (1989).PubMedGoogle Scholar
  15. 15.
    T. Kayano, C.F. Burant, H. Fukumoto, G.W. Gould, Y-S Fan, R.L. Eddy, M.G. Byers, T.B. Shows, S. Seino, and G.I. Bell, Human facilitative glucose transporters, J Biol Chem 265:13276–13282 (1990).PubMedGoogle Scholar
  16. 16.
    G.I. Bell, T. Kayano, J.B. Buse, C.F. Burant, J. Takeda, D. Lin, H. Fukumoto, and S. Seino, Molecular biology of mammalian glucose transporters, Diabetes Care 13:198–208 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    J.B. Meddings, D. deSouza, M. Goel, and S. Thiesen, Glucose transport and microvillus membrane physical properties along the crypt-villus axis of the rabbit, J Clin Invest 85:1099–1107 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    H. Werner, M. Adamo, W.L. Lowe, Jr., C.T. Roberts, Jr., and D. LeRoith, Developmental regulation of the rat brain/Hep G2 glucose transporter gene expression, Mol Endocrinology 3:273–279 (1989).CrossRefGoogle Scholar
  19. 19.
    W. Sivitz, S. DeSautel, P.S. Walker, and J.E. Pessin, Regulation of the glucose transporter in developing rat brain, Endocrinology 124:1875–1880 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    F. Sadiq, L. Holtzclaw, K. Chundu, A. Muzzafar, and S. Devaskar, The ontogeny of the rabbit brain glucose transporter, Endocrinology 126: 2417–2424 (1990).PubMedCrossRefGoogle Scholar
  21. 21.
    J.S. Flier, M. Mueckler, A.L. Mc-Call, and H.F. Lodish, Distribution of glucose transporter mRNA transcripts in tissues of rat and man, J Clin Invest 79:657–661 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    S. Devaskar, K. Chundu, D.S. Zahm, and L. Holtzclaw The neonatal rabbit brain glucose transporter, Dev Brain Res (submitted 1990).Google Scholar
  23. 23.
    S. Devaskar, D.S. Zahm, L. Holtzclaw, K. Chundu, and B.E. Wadzinski, Developmental regulation of the distribution of rat brain insulin-insensitive glucose transporter (in preparation 1990).Google Scholar
  24. 24.
    W.M. Pardridge, R.J. Boado, and C.R. Farrell, Brain-type glucose transporter (Glut 1) is selectively localized to the blood-brain barrier, J Biol Chem 265:18035–18040 (1990).PubMedGoogle Scholar
  25. 25.
    L. Sokoloff, M. Reivich, C. Kennedy, M.H. Des Rosiers, C.S. Patak, K.D. Pettigrew, O. Sakura, and M. Rhinohara, The (14C) deoxy-glucose method for the measurement of local cerebral glucose utilization: Theory, procedure, and normal values in the conscious and anesthetized albino rat, J Neurochem 28:897–916 (1977).PubMedCrossRefGoogle Scholar
  26. 26.
    R.C. Vannucci, M.A. Christensen, and D.T. Stein, Regional cerebral glucose utilization in the immature rat: Effect of hypoxia-ischemia, Ped Res 26:208–214 (1989).CrossRefGoogle Scholar
  27. 27.
    M. Hara, Y. Matsuda, K. Hirai, N. Okumura, and H. Nakagawa, Characteristics of glucose transport in neuronal cells and astrocytes from rat brain in primary culture, J Neurochem 52:902–908 (1989).PubMedCrossRefGoogle Scholar
  28. 28.
    D.W. Clarke, F.T. Boyd, Jr., M.S. Kappy, and M.K. Raizada, Insulin binds to specific receptors and stimulates 2-deoxy-D-glucose uptake in cultured glial cells from rat brain, J Biol Chem 259:11672–11675 (1984).PubMedGoogle Scholar
  29. 29.
    FT. Boyd, Jr., D.W. Clarke, T.F. Muther, and M.K. Raizada, Insulin receptors and insulin modulation of norepinephrine uptake in neuronal cultures from rat brain, J Biol Chem 260:15880–15885 (1985).PubMedGoogle Scholar
  30. 30.
    K. Heidenreich, P.R. Gilmore, and W.T. Garvey, Glucose transport in primary cultured neurons, J Neuroscience Res 22:397–407 (1989).CrossRefGoogle Scholar
  31. 31.
    K. Keller, K. Lange, and J. Malkewitz, Glucose transporter in plasma membranes of cultured neural cells as characterized by cytochalasin B binding, J Neurochem 47:1394–1398 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    A. Zorzano, W. Wilkinson, N. Kotliar, G. Thoidis, B.E. Wadzinski, A.E. Ruoho, and P.F. Pilch, Insulin-regulated glucose uptake in rat adipocytes is mediated by two transporter isoforms present in at least two vesicle populations, J Biol Chem 264: 12358–12363 (1989).PubMedGoogle Scholar
  33. 33.
    L. Koranyi, R. Bourey, F. Fiedorek, and M.A. Permutt, Alterations of brain glucose transporter mRNA in diabetic and chronic glucose starved rats, Diabetes 38:65A:260 (abstract).Google Scholar
  34. 34.
    D. Cole, U. Devaskar, M. George, and S. Devaskar, Opposing effects of maternal diabetes on maternal and fetal brain glucose transporter proteins, Clin Res 38(3):804A (1990).Google Scholar
  35. 35.
    S.I. Harik, S.A. Gravina, and R.N. Kalaria, Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia, J Neurochem 51:1930– 1934 (1988).PubMedCrossRefGoogle Scholar
  36. 36.
    S. Matthaei, R. Horuk, and J.M. Olefsky, Blood-brain glucose transfer in diabetes mellitus - decreased number of glucose transporters at blood-brain barrier, Diabetes 35:1181–1184 (1984).CrossRefGoogle Scholar
  37. 37.
    T.B. Choi, R.J. Boado, and Pardridge, Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus, Biochem Biophys Research Commun 164:375–380 (1989).CrossRefGoogle Scholar
  38. 38.
    W.M. Pardridge, D. Triguero, and C.R. Farrell, Downregulation of blood-brain barrier glucose transporter in experimental diabetes, Diabetes 39:1040– 1044 (1990).PubMedCrossRefGoogle Scholar
  39. 39.
    P.S. Walker, J.A. Donovan, B.G. Van Ness, R.E. Fellows, and J.E. Pessin, Glucose-dependent regulation of glucose transport activity, protein and mRNA in primary cultures of rat brain glial cells, J Biol Chem 263:15594– 15601 (1988).PubMedGoogle Scholar
  40. 40.
    M. Hara, Y. Matsuda, N. Okumura, K. Hirai, and H. Nakagawa, Effect of glucose starvation on glucose transport in neuronal cells in primary culture from rat brain, J Neurochem 52:909–912 (1989).PubMedCrossRefGoogle Scholar
  41. 41.
    H. Werner, M.K. Raizada, L.M. Mudd, H.L. Foyt, I.A. Simpson, C.T. Roberts, Jr., and D. LeRoith, Regulation of rat Brain/Hep G2 glucose transporter gene expression by insulin and insulin-like growth factor-l in primary cultures of neuronal and glial cells, Endocrinology 125:314–320 (1989).PubMedCrossRefGoogle Scholar
  42. 42.
    L.M. Mudd, H. Werner, Z. Shen-Orr, C.T. Roberts, Jr., D. LeRoith, H.C. Haspel, and M.K. Raizada, Regulation of rat brain/Hep G2 glucose transporter gene expression by phorbol esters in primary cultures of neuronal and astrocytic glial cells, Endocrinology 126:545–549 (1990).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Sherin U. Devaskar
    • 1
    • 2
  1. 1.Department of PediatricsSt. Louis University School of MedicineSt. LouisUSA
  2. 2.The Pediatric Research InstituteCardinal Glennon Children’s HospitalSt. LouisUSA

Personalised recommendations