Advertisement

Glucose Transporters in Central Nervous System Glucose Homeostasis

  • Bartosz Z. Rydzewski
  • Magdalena M. Wozniak
  • Mohan K. Raizada
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)

Abstract

The brain is considered to be a glucose-obligatory organ, that is neuronal and glial cells from the central nervous system (CNS) are dependent on glucose as a sole energy source1. The ability of various anatomical areas of the brain to utilize glucose has been shown to have a major impact on the control of certain physiological and behavioral functions of the brain. This has resulted in an increased desire to elucidate the cellular and molecular mechanisms involved in the transport, metabolism, and sensitivity to the glucose in the brain. Recent identification and characterization of a facilitative glucose transporter family have set a pace for research involving glucose uptake systems present in the brain cells.

Keywords

Glucose Transporter Glut1 Expression Glut1 mRNA Facilitative Glucose Transporter Astroglial Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lund-Andersen, H. Transport of glucose from blood to brain. Phys. Rev. 59:305–310, 1979.Google Scholar
  2. 2.
    Dick, A. P., Harik, S. I., Klip, A., Walker, D. M. Identification and characterization of the glucose transporter of the blood-brain barrier by cytochalasin B binding and immunological reactivity. Proc. Natl. Acad. Sci. USA 81:7233–7237, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Baldwin, S. A., Cairns, M. T., Gardiner, R. M., Ruggier, R. A. D-glucose-sensitive cytochalasin B binding component of cerebral microvessels. J. Neurochem. 45:650–652, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Dick, A. P., Harik, S. I. Distribution of the glucose transporter in the mammalian brain. J. Neurochem. 46:1406–1411, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Matthaei, S., Olefsky, J. M., Horuk, R. Biochemical characterization and subcellular distribution of the glucose transporter from rat brain microvessels. Biochim. Biophys. Acta 905:417–425, 1987.PubMedCrossRefGoogle Scholar
  6. 6.
    Kasanicki, M. A., Cairns, M. T., Davies, A., Gardiner, R. M., Baldwin, S. A. dentification and characterization of the glucose-transport protein of the bovine blood/brain barrier. Biochem. J. 247:101–108, 1987.PubMedGoogle Scholar
  7. 7.
    Kalaria, R. N., Gravina, S. A., Schmidley, J. W., Perry, G., Harik, S. I. The lucose transporter of the human brain and blood-brain barrier. Ann. Neurol. 24:757–764, 1988.PubMedCrossRefGoogle Scholar
  8. 8.
    Gerhart, D. Z., LeVasseur, R. J., Broderius, M. A., Drewes, L R. Glucose transporter localization in brain using light and electron immunocytochemistry. J. Neuroscl. Res. 22:464–472, 1989.CrossRefGoogle Scholar
  9. 9.
    Devaskar, S. The mammalian brain glucose transport system. In: Molecular Biology and Physiology of Insulin and Insulin-like Growth FactorsRaizada, M. K., and LeRoith, D., Plenum Press, New York, 1991 (in press).Google Scholar
  10. 10.
    Pardridge, W. M., Boado, R. J. and Farrel, C. R. Brain-type glucose transporter (GLUT 1) is selectively localized to the blood brain barrier. J. Biol. Chem. 265:18035–18040, 1990.PubMedGoogle Scholar
  11. 11.
    Pessin, J. E., Tillotson, L. G., Yamada, K., . Identification of the stereospecific hexose hexose transporter from starved and fed chicken embryo fibroblasts. Proc. Natl. Acad. Sci. USA 79:2286–2290, 1982.PubMedCrossRefGoogle Scholar
  12. 12.
    Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E. and Pessin, J. E. Glucose-dependent regulation of glucose transport activity, protein, and mRNA in primary cultures of rat brain glial cells. J. Biol. Chem. 263:15594–15601, 1988.PubMedGoogle Scholar
  13. 13.
    Choi, T. B., Boado, R. J. and Pardridge, W. M. Blood-brain barrier glucose transporter mRNA is increased in experimental diabetes mellitus. Biochem. Biophys. Res. Commun. 164:375–380, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    Harik, S. I., Gravina, S. A. and Kalaria, R. N. Glucose transporter of the blood-brain barrier and brain in chronic hyperglycemia. J. Neurochem. 51:1930–1934, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Matthaei, S., Horuk, R. and Olefsky, J. M. Blood-brain glucose transfer in diabetes mellitus. Decreased number of glucose transporters at blood-brain barrier. Diabetes. 35:1181–1184, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Pardridge, W. M., Triguero, D. and Farrell, C. R. Downregulation of blood-brain barrier glucose transporter in experimental diabetes. Diabetes. 39:1040–1044, 1990.PubMedCrossRefGoogle Scholar
  17. 17.
    Kayano, T., Fukumoto, H., Eddy, R. L, . Evidence for a Family of Human Transporter-like Proteins. J Biol Chem 263:15245–15248, 1988.PubMedGoogle Scholar
  18. 18.
    Werner, H., Raizada, M. K., Mudd, L. M., . Regulation of Rat Brain/HepG2 glucose Transporter Gene Expression by Insulin and Insulin-Like Growth Factor-I in Primary Cultures of Neuronal and Glial Cells. Endocrinology 125 No. 1:314–320, 1989.Google Scholar
  19. 19.
    Mudd, L. M., Werner, H., Shen-Orr, Z., . Regulation of Rat Brain/HepG2 Glucose Transporter Gene Expression by Phorbol Esters in Primary Cultures of Neuronal and Glial Cells. Endocrinology 126 No. 1:545–549, 1990.CrossRefGoogle Scholar
  20. 20.
    Sadiq, F., Holtzclaw, L., Chundu, K., Muzzafar, A. and Devaskar, S. The Ontogeny of the Rabbit Brain Glucose Transporter. Endocrinology 126 No. 5:2417–2424, 1990.CrossRefGoogle Scholar
  21. 21.
    Boado, R. J. and Pardridge, W. M. The Brain-type Glucose Transporter mRNA is Specifically Expressed at the Blood-Brain Barrier. Biochem. Biophys. Res. Commun. 166:174–9, 1990.PubMedCrossRefGoogle Scholar
  22. 22.
    Clarke, D., Ramaswamy, A., Holmes, L, Mudd, L., Poulakos, J. and Raizada, M. K. Phorbol Esters Stimulate 2-deoxyglucose Uptake in Glia, but Not Neurons. Brain Research 421:358–362, 1987.PubMedCrossRefGoogle Scholar
  23. 23.
    Clarke, D. W., Boyd, F. T., Kappy, M. S. and Raizada, M. K. Insulin Binds to Specific Receptors and Stimulates 2-deoxy D-glucose Uptake in Cultured Glial Cells From Rat Brain. J. Biol. Chem. 259:11672–11678, 1984.PubMedGoogle Scholar
  24. 24.
    Sivitz, W., DeSautel, S., Walker, P. S. and Pessin J. E. Regulation of the Glucose Transporter In Developing Rat Brain. Endocrin. 124:1875–1880, 1989.CrossRefGoogle Scholar
  25. 25.
    Werner, H., Adamo, M., Lowe Jr., W. L, Roberts Jr., C. T. and LeRoith, D. Developmental regulation of the Rat Brain/HepG2 Glucose Transporter Gene Expression. Mol. Endocrin. 3:273–279, 1989.CrossRefGoogle Scholar
  26. 26.
    Steffens, A. B., Sheurink, A. J. W., Porte Jr., D. and Woods, S. C. Penetration of peripheral glucose and insulin into cerebrospinal fluid in rats. Am. J. Physiol. 255:R200, 1988.PubMedGoogle Scholar
  27. 27.
    Hertz, M. and Paulson, O. Glucose Transfer Across the Blood-Brai Barrier. Adv. Met. Disorders. 10:178–192, 1983.Google Scholar
  28. 28.
    Oomura, Y. Glucose as a Regulator of Neuronal Activity. Adv. Met. Disorders. 10:31–65, 1983.Google Scholar
  29. 29.
    Fukumoto, H., Seino, S., Imura, H.,Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. USA 85:5434–5438, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Thorens, B., Sarkar, H. K., Kaback, H. R. and Lodish, H. F. Cloning nad functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell 55:281–290, 1988.PubMedCrossRefGoogle Scholar
  31. 31.
    Chen, L, Alam, T., Johnson, J. H., Hughes, S., Newgard, C. B. and Unger, R. H. Regulation of beta-cell glucose transporter gene expression. Proc. Natl. Acad. Sci. USA 87:4088–4092, 1990.PubMedCrossRefGoogle Scholar
  32. 32.
    Axelrod, J. D. and Pilch, P. F. Unique Cytochalasin B Binding Characteristics of the Hepatic Glucose Carrier. Biochem. 22:2222–2227, 1983CrossRefGoogle Scholar
  33. 33.
    Wheeler, T. J. and Hinkle, P. C. The Glucose Transporter of Mammalian Cells. Ann. Rev. Physiol. 47:503–508, 1989.CrossRefGoogle Scholar
  34. 34.
    Keller, K., Strube, M. and Mueckler, M. Functional Expression of the Human HepG2 and Rat Adipocyte Glucose Transporters in Xenopus Oocytes. J. Biol. Chem. 264:1884–1890 , 1989.Google Scholar
  35. 35.
    Fukumoto, H., Kayano, T., Buse, J. B., . Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin responsive tissues. J Biol Chem 264:7776–7779, 1989.PubMedGoogle Scholar
  36. 36.
    Thorens, B., Charron, M. J. and Lodish, H. F. Molecular physiology of glucose transporters. Diabetes Care 13:209–218, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Adamo, M., Raizada, M. K. and Leroith, D. Insulin and Insulin-Like Growth Factor Receptors in the Nervous System. Mol. Neurobiol. 3:72–100, 1989.CrossRefGoogle Scholar
  38. 38.
    Wardzala, L. J., Cushman, S. W. and Salans L. B. Mechanism of Insulin Action on Glucose Transport in the Isolated Rat Adipose Cell. J. Biol. Chem. 253:8002–8005, 1978.PubMedGoogle Scholar
  39. 39.
    Suzuki, K. and Kono, T. Evidence that Insulin Causes Translocation of Glucose Transport Activity to the Plasma Membrane from an Intracellular Storage Site. Proc. Natl. Acad. Sci. USA. 77:2542–2545, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Woods, S. C. and Porte Jr., D. The Role of Insulin as a Satiety Factor in the Central Nervous System. Adv. Met. Disorders 10:457–468, 1983.Google Scholar
  41. 41.
    Roeder, L. M., Hopkins, I. B., Kaiser, J. R., Hanukoglu, L. and Tildon, J. T. Thyroid Hormone Action on Glucose Transporter Activity in Astrocytes. Biochem. Biophys. Res. Commun. 156:275–281, 1988.CrossRefGoogle Scholar
  42. 42.
    Elbein, A. D. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Annu. Rev. Biochem. 56:497–534, 1987.PubMedCrossRefGoogle Scholar
  43. 43.
    Lee, A. S., Delegeane, A. M., Baker, V. and Chow, P. C. Transcriptional regulation of two genes specifically induced by glucose starvation in a hamster mutant fibroblast cell line. J. Biol. Chem. 258:597–603, 1983.PubMedGoogle Scholar
  44. 44.
    Attenello, J. W. and Lee, A. S. Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts. Science 226:187–190, 1984PubMedCrossRefGoogle Scholar
  45. 45.
    Chang, S. C, Wooden, S. K., Nakaki, T., Kim, Y. K., Lin, A. T., Kung, L., Attenello, J. W. and Lee, A. S. Rat gene encoding the 78-kDa glucose regulated protein GRP78: its regulatory sequences and the effect of protein glycosylation on its expression. Proc. Natl. Acad. Sci. USA. 84:680–684, 1987.PubMedCrossRefGoogle Scholar
  46. 46.
    Parfett, C. L. J., Brudzynski, K. and Stiller, C. Enhanced accumulation of mRNA for 78-kilodalton glucose-regulated protein (GRP78) in tissues of nonobese diabetic mice. Biochem. Cell Biol. 68:1428–1432, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Bartosz Z. Rydzewski
    • 1
  • Magdalena M. Wozniak
    • 2
  • Mohan K. Raizada
    • 1
  1. 1.Department of Physiology (B.Z.R., M.K.R), College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Pharmacology & Experimental Therapeutics (M.M.W.), College of MedicineUniversity of FloridaGainesvilleUSA

Personalised recommendations