Reciprocal Modulation of Binding of Lysosomal Enzymes and Insulin-Like Growth Factor-II (IGF-II) to the Mannose 6- Phosphate/IGF-II Receptor

  • Peter Nissley
  • Wieland Kiess
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)


The discovery by Morgan et al.1 that the human IGF-II receptor is 80% homologous to the bovine cation-independent mannose 6-phosphate (Man-6-P) receptor led them to propose that the receptor is bifunctional, binding both a large number of lysosomal enzymes through the Man-6-P recognition site, and the growth factor, IGF-II. Later, Komfeld’s and Czech’s laboratories reported that the avian and amphibian Man-6-P receptors did not bind IGF-II, suggesting that the bifunctional property of the receptor may be confined to mammals.2,3 Did the mammalian receptor gene simply pick up a nucleotide sequence encoding an IGF-II binding site, enabling the receptor to provide a degradative pathway for IGF-II, or are there important interactions of the two disparate classes of ligands for binding to the receptor? These interactions could result in reciprocal modulation of the targeting of lysosomal enzymes by IGF-II, on the one hand, and the modulation of IGF-II degradation and IGF-II stimulated biologic responses by lysosomal enzymes, on the other. We will briefly summarize our experimental results which provide evidence for reciprocal inhibition of binding of the two classes of ligands for the mammalian Man-6-P/ IGF-II receptor.


Cellular Uptake Lysosomal Enzyme Reciprocal Modulation High Extracellular Concentration Disuccinimidyl Suberate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. O. Morgan, J. C. Edman, D. N. Standring, V. A. Fried, M. C. Smith, R. A. Roth, and W. J. Rutter. Insulin-like growth factor II receptor as a multifunctional binding protein.Nature 329: 301 (1987).PubMedCrossRefGoogle Scholar
  2. 2.
    W. M. Canfleld and S. Kornfeld. The chicken liver cation-independent mannose 6-phosphate receptor lacks the high affinity binding site for insulin-like growth factor II.J. Biol. Chem. 264: 7100 (1989).Google Scholar
  3. 3.
    K. B. Clairmont and M. P. Czech. Chicken andXenopus mannose 6-phosphate receptors fail to bind insulin-like growth factor II.J. Biol. Chem. 264: 16390 (1989).PubMedGoogle Scholar
  4. 4.
    W. Kiess, C. L. Thomas, M. M. Sklar, and S. P. Nissley. Betagalactosidase decreases the binding affinity of the insulin-like growth factor-ll/mannose 6-phosphate receptor for the insulin-like growth factor-ll.Eur. J. Biochem. 190: 71 (1990).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Robbins, R. Myerowitz, R. J. Youle, G. J. Murray, and D. M. Neville. The mannose 6-phosphate receptor of Chinese hamster ovary cells. Isolation of mutants with altered receptors.J. Biol. Chem. 256: 10618 (1981).PubMedGoogle Scholar
  6. 6.
    G. G. Sahagian, J. Distler, and G. W. Jourdian. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular β-galactosidase.Proc. Natl. Acad. Sci. USA. 78: 4289 (1981).PubMedCrossRefGoogle Scholar
  7. 7.
    P. Y. Tong, W. Gregory, and S. Kornfeld. Ligand interactions of the cationindependent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding.J. Biol. Chem. 264: 7962 (1989).PubMedGoogle Scholar
  8. 8.
    W. Kiess, G. D. Blickenstaff, M. M. Sklar, C. L. Thomas, S. P. Nissley, and G. G. Sahagian. Biochemical evidence that the type II insulin-like growth factor receptor is identical to the cation-independent mannose 6-phosphate receptor.J. Biol. Chem. 263: 9339 (1988).PubMedGoogle Scholar
  9. 9.
    M. Mathieu, H. Rochefort, B. Barenton, C. Prebois, and F. Vignon. Interactions of cathepsin-D and insulin-like growth factor-ll (IGF-II) on the IGF-ll/mannose-6-phosphate receptor in human breast cancer cells and possible consequences on mitogenic activity of IGF-II.Mol. Endocrinol. 4: 1327 (1990).PubMedCrossRefGoogle Scholar
  10. 10.
    C. M. Nolan, J. W. Kyle, H. Watanabe, and W. S. Sly. Binding of insulinlike growth factor II (IGF-II) by human cation-independent mannose 6-phosphate receptor/IGF-ll receptor expressed in receptor-deficient mouse L cells.Cell Regulation 1: 197 (1990).PubMedGoogle Scholar
  11. 11.
    T. Braulke, C. Causin, A. Waheed, U. Junghans, A. Hasilik, P. Maly, R. E. Humbel, and K. von Figura. Mannose 6-phosphate/insulin-like growth factor II receptor: distinct binding sites for mannose 6-phosphate and insulin-like growth factor II.Biochem. Biophys. Res. Comm. 150: 1287 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    R. A. Roth, C. Stover, J. Hari, D. O. Morgan, M. C. Smith, V. Sara, and V. A. Fried. Interactions of the receptor for insulin-like growth factor II with mannose 6-phosphate and antibodies to the mannose 6-phosphate receptor.Biochem. Biophys. Res. Comm. 149: 600 (1987).PubMedCrossRefGoogle Scholar
  13. 13.
    R. G. MacDonald, S. R. Pfeffer, L. Coussens, M. A. Tepper, C. M. Brocklebank, J. E. Mole, J. K. Anderson, E. Chen, M. P. Czech, and A. Ullrich. A single receptor binds both insulin-like growth factor II and mannose 6-phosphate.Science 239: 1134 (1988).PubMedCrossRefGoogle Scholar
  14. 14.
    C. Polychronakos, H. J. Guyda, and B. I. Posner. Mannnose 6-phosphate increases the affinity of its cation-independent receptor for insulin-like growth factor II by displacing inhibitory endogenous ligands.Biochem. Biophys. Res. Commun. 157: 632 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    N. M. Dahms, P. Lobel, and S. Komfeld. Mannose 6-phosphate receptors and lysosomal enzyme targeting.J. Biol. Chem. 264: 12115 (1989).PubMedGoogle Scholar
  16. 16.
    Y. Oka, L. M. Rozek, and M. P. Czech. Direct demonstration of rapid insulin-like growth factor II receptor internalization and recycling in rat adipocytes. Insulin stimulates 125l-insulin-like growth factor II degradation by modulating the IGF-II receptor recycling process.J. Biol. Chem. 260: 9435 (1985).PubMedGoogle Scholar
  17. 17.
    W. Kiess, J. F. Haskell, L Lee, L A. Greenstein, B. E. Miller, A. L Aarons, M. M. Rechler, and S. P. Nissley. An antibody that blocks insulin-like growth factor (IGF) binding to the type II IGF receptor is neither an agonist nor an inhibitor of IGF-stimulated biologic responses in L6 myoblasts.J. Biol. Chem. 262: 12745 (1987).PubMedGoogle Scholar
  18. 18.
    Y. Yarden, and A. Ullrich. Growth factor receptor tyrosine kinases.Ann. Rev. Biochem. 57: 443 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    R. W. Furlanetto, J. N. DiCarlo, and C. Wisehart. The type II insulin-like growth factor receptor does not mediate deoxyribonucleic acid synthesis in human fibroblasts.J. Clin. Endocrinol. Metab. 64: 1142 (1987).PubMedCrossRefGoogle Scholar
  20. 20.
    C. A. Conover, P. Misra, R. L. Hintz, and R. G. Rosenfeld. Effect of an anti-insulin-like growth factor I receptor antibody on insulin-like growth factor II stimulation of DNA synthesis in human fibroblasts.Biochem. Biophys. Res. Commun. 139: 501 (1986).PubMedCrossRefGoogle Scholar
  21. 21.
    S. A. Rogers and M. R. Hammerman. Insulin-like growth factor II stimulates production of inositol trisphosphate in proximal tubular basolateral membranes from canine kidney.Proc. Natl. Acad. Sci. USA. 85: 4037 (1988).PubMedCrossRefGoogle Scholar
  22. 22.
    M. Tally, C. H. Li, and K. Hall. IGF-2 stimulated growth mediated by the somatomedin type 2 receptor.Biochem. Biophys. Res. Commun. 148: 811 (1987).PubMedCrossRefGoogle Scholar
  23. 23.
    B. Bhaumick and R. M. Bala. Parallel effects of insulin-like growth factorII and insulin on glucose metabolism of developing mouse embryonic limb buds in culture.Biochem. Biophys. Res. Commun. 152: 359 (1988).CrossRefGoogle Scholar
  24. 24.
    J. Hari, S. B. Pierce, D. O. Morgan, V. Sara, M. C. Smith, and R. A. Roth. The receptor for insulin-like growth factor II mediates an insulin-like response.EMBO J. 6: 3367 (1987).PubMedGoogle Scholar
  25. 25.
    I. Kojima, I. Nishimoto, T. liri, E. Ogata, and R. Rosenfeld. Evidence that type II insulin-like growth factor receptor is coupled to calcium gating system.Biochem. Biophys. Res. Commun. 154: 9 (1988).PubMedCrossRefGoogle Scholar
  26. 26.
    I. Nishimoto, Y. Murayama, Y. Katada, M. Ui, and E. Ogata. Possible direct linkage of insulin-like growth factor-ll receptor with guanine nucleotide-binding proteins.J. Biol. Chem. 264: 14029 (1989).PubMedGoogle Scholar
  27. 27.
    W. Kiess, C. L. Thomas, L. A. Greenstein, L. Lee, M. M. Sklar, M. M. Rechler, G. G. Sahagian, and S. P. Nissley. Insulin-like growth factor-ll (IGF-II) inhibits both the cellular uptake of /3-galactosidase and the binding of β-galactosidase to purified IGF-ll/mannose 6-phosphate receptor.J. Biol. Chem. 264: 4710 (1989).PubMedGoogle Scholar
  28. 28.
    P. Y. Tong, S. E. Tollefsen, and S. Komfeld. The cation-independent mannose 6-phosphate receptor binds insulin-like growth factor II.J. Biol. Chem. 263: 2585 (1988).PubMedGoogle Scholar
  29. 29.
    W. Kiess, L. A. Greenstein, L. Lee, C. Thomas, and S. P. Nissley. Biosynthesis of the insulin-like growth factor-ll (IGF-ll)/mannose 6-phosphate receptor in rat C6 glial cells. The role of N-linked glycosylation in binding of IGF-II to the receptor.Mol. Endocrinol. ,in press (1991).Google Scholar
  30. 30.
    G. G. Sahagian and E. F. Neufeld. Biosynthesis and turnover of the mannose 6-phosphate receptor in cultured Chinese hamster ovary cells.J. Biol. Chem. 258: 7121 (1983).PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Peter Nissley
    • 1
  • Wieland Kiess
    • 2
  1. 1.Metabolism Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Children’s HospitalUniversity of MunichMunichGermany

Personalised recommendations