Advertisement

Molecular Mechanisms Involved in the Antilipolytic Action of Insulin: Phosphorylation and Activation of a Particulate Adipocyte cAMP Phosphodiesterase

  • Vincent C. Manganiello
  • Carolyn J. Smith
  • Eva Degerman
  • Valeria Vasta
  • Hans Tornqvist
  • Per Belfrage
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)

Abstract

cAMP is an important intracellular second messenger in hormonal regulation of many physiological processes, including lipolysis, glycogenolysis, platelet aggregation, myocardial contractility, and smooth muscle relaxation (1–5). The isolated rat adipocyte has served as a useful model system in which to study hormonal and cAMP-mediated regulation of lipolysis. As outlined in Fig. 1, in rat adipocytes lipolytic hormones (e.g., catecholamines, glucagon, ACTH) and certain antilipolytic effectors (such as adenosine and prostaglandin E1) interact with specific cell surface receptors and transmit stimulatory or inhibitory signals to the catalytic unit of adenylate cyclase via stimulatory or inhibitory guanyl nucleotide binding proteins, respectively. cAMP activates cAMP-dependent protein kinase (cAMP-PrK) which phosphorylates, on serine-563 (6,7), and activates the hormone-sensitive lipase, leading to hydrolysis of stored triglyceride with release of glycerol and free fatty acids. Steady state concentrations of cAMP are also regulated by cyclic nucleotide phosphodiesterases, enzymes that catalyze hydrolysis of cAMP to 5’AMP. From the scheme presented in Fig. 1, it is obvious that lipolysis can be regulated at several loci, i.e., at the level of cAMP formation or destruction, cAMP-PrK, protein phosphatase(s), etc.

Keywords

Adenosine Deaminase Smooth Muscle Relaxation Cyclic Nucleotide Phosphodiesterase cAMP Analog Triglyceride Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Steinberg, D., Mayer, S.E., Khoo, J. C., Miller, E.A., Friedholm, B., and Eichner, R. (1975) Adv. Cyclic Nucleotide Res., 5, 549–568.PubMedGoogle Scholar
  2. 2.
    Sutherland, E.W. (1971) Cyclic AMP, Academic Press, New York, pp. 5–17.Google Scholar
  3. 3.
    Salzman, E.W., and Weisinberger, H. (1972) Adv. Cyclic Nucleotide Res. 1, 231–248.PubMedGoogle Scholar
  4. 4.
    Colucci, W.S., Wright, R.F., and Braunwald, E. (1986) New Engl. J. Med., 314, 290–299, 349–358.PubMedCrossRefGoogle Scholar
  5. 5.
    Kramer, G.L., and Hardman, J.G. (1980) Handbook of Physiology: The Cardiovascular System II, American Physiological Society, Bethesda, MD pp. 179–199.Google Scholar
  6. 6.
    Stralfors, P., Bjorgell, P., and Belfrage, P. (1984) Proc. Natl. Acad. Sci. U.S.A., 81, 3317–3321.PubMedCrossRefGoogle Scholar
  7. 7.
    Holm, C, Kirchgessner, T.G., Svenson, K.L., Fredrickson, G., Nelsson, S., Miller, C.G., Shively, J.E., Heinzmann, C., Sparkes, R.S., Mohandas, T., Lusis, A.J., Belfrage, P., and Schotz, M.C. (1988) Science, 241, 1503–1506.PubMedCrossRefGoogle Scholar
  8. 8.
    Belfrage, P., Fredrickson, G., Olsson, H., and Stralfors, P. (1983) The Adipocyte and Obesity: Cellular and Molecular Mechanisms, Raven Press, New York, pp. 217–224.Google Scholar
  9. 9.
    Londos, C., Honnor, R.C., and Dhillon, G.S. (1985) J. Biol. Chem. 260. 15139–15145.PubMedGoogle Scholar
  10. 10.
    Butcher, R.W., Sneyd, J., Parks, C.R., and Sutherland, E.W. (1966) J. Biol. Chem., 241, 1651–1653.PubMedGoogle Scholar
  11. 11.
    Soderling, T.R., Corbin, J.D., and Park, C.R. (1973) J. Biol. Chem., 248, 1822–1829.PubMedGoogle Scholar
  12. 12.
    Manganiello, V.C., Smith, C.J., Degerman, E., and Belfrage, P. (1990) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action, John Wiley and Sons Ltd., Chichester, pp. 87–116.Google Scholar
  13. 13.
    Smith, C.J., and Manganiello, V.C. (1989) Mol. Pharm., 35, 381–386.Google Scholar
  14. 14.
    Degerman, E., Smith, C.J., Tornqvist, H., Vasta, V., Belfrage, P., and Manganiello, V.C. (1990) Proc. Natl. Acad. Sci. U.S.A., 87, 533–537.PubMedCrossRefGoogle Scholar
  15. 15.
    Beavo, J. (1990) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action, John Wiley and Sons Ltd., Chichester, pp. 3–19.Google Scholar
  16. 16.
    Beavo, J. (1988) Adv. Second Messenger Phosphoprotein Res., 22, 1–38.PubMedGoogle Scholar
  17. 17.
    Weishaar, R.E., Carn, M.H., and Bristol, J.A. (1985) J. Med. Chem., 28, 537–545.PubMedCrossRefGoogle Scholar
  18. 18.
    Beavo, J., and Reifsnyder, D.H. (1990) Trends in Pharmacological Sciences, 11, 150–156.PubMedCrossRefGoogle Scholar
  19. 19.
    Degerman, E., Belfrage, P., Newman, A.H., Rice, K.C., and Manganiello, V.C. (1987) J. Biol. Chem., 262, 5797–5807.PubMedGoogle Scholar
  20. 20.
    Degerman, E., Manganiello, V.C., Newman, A.H., Rice, K.C., and Belfrage, P. (1988) Adv. Second Messengers and Phosphoproteins, 12, 171–182.Google Scholar
  21. 21.
    Rascon, A., Belfrage, P., Lindgren, S., Andersson, K.E., Newman, A.H., Manganiello, V.C., and Degerman, E. (1990) Purine Nucleosides and Nucleotides in Cell Signalling: Targets for New Drugs, Springer-Verlag, New York, pp. 353–358.Google Scholar
  22. 22.
    Kono, T., Robinson, F.W., and Sarver, J.A. (1975) J. Biol. Chem., 250. 7826–7835.PubMedGoogle Scholar
  23. 23.
    Kauffman, R.F., Crowe, V.G., Utterback, B.G., and Robertson, D.W. (1987) Mol. Pharm., 30, 609–616.Google Scholar
  24. 24.
    Masuoka, H., Ito, M., Nakano, T., Naka, M., and Tanaka, T. (1990) J. Cardiovasc. Pharm., 15, 302–307.CrossRefGoogle Scholar
  25. 25.
    Grant, P.W., and Colman, R.W. (1984) Biochemistry, 23, 1801–1807.PubMedCrossRefGoogle Scholar
  26. 26.
    Harrison, S.A., Reifsnyder, D.H., Gallis, B., Cadd, C.G., and Beavo, J.A. (1986) Mol. Pharm., 25, 506–514.Google Scholar
  27. 27.
    Macphee, C.H., Harrison, S.A., and Beavo, J.A. (1986) Proc. Natl. Acad. Sci. U.S.A., 83, 6660–6663.PubMedCrossRefGoogle Scholar
  28. 28.
    Boyes, S., and Loten, E.G. (1988) Eur. J. Biochem., 174, 303–309.PubMedCrossRefGoogle Scholar
  29. 29.
    Houslay, M.D., and Kilgour, E. (1990) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action, John Wiley and Sons, Ltd., Chichester, pp. 185–226.Google Scholar
  30. 30.
    Macphee, C.H., Reifsnyder, D.H., Moore, T.A., Levea, K.M., and Beavo, J.A. (1988) J. Biol. Chem., 263, 10353–10358.PubMedGoogle Scholar
  31. 31.
    Grant, P.H., Marinaro, A.F., and Colman, R.W. (1988) Proc. Natl. Acad. Sci. U.S.A., 85, 9071–9075.PubMedCrossRefGoogle Scholar
  32. 32.
    Smith, C.J., Vasta V., Degerman, E., Tornqvist, H., and Manganiello, V.C., ms. submitted.Google Scholar
  33. 33.
    Reeves, M.L., and England, P.J. (1990) Cyclic Nucleotide Phosphodiesterases: Structure, Regulation, and Drug Action, John Wiley and Sons Ltd., Chichester, pp. 299–316.Google Scholar
  34. 34.
    Lindgren, S., Rascon, A., Andersson, K.-E., Manganiello, V.C., and Degerman, E. (1990) ms. submitted.Google Scholar
  35. 35.
    Alvarez, R., Banerjie, G.L., Brunz, J.J., Jones, G.L., Littachwager, K., Strossberg, A., and Venuti, M.C. (1986) Mol. Pharm., 29, 554–560.Google Scholar
  36. 36.
    Gettys, T.W., Vine, A.J., Simonds, M.F., and Corbin, J.D. (1988) J. Biol. Chem., 263, 10359–10363.PubMedGoogle Scholar
  37. 37.
    Beebe, S.J., Redman, J.B., Blackmore, P.W., and Corbin, J.D. (1985) J. Biol. Chem., 260, 15781–15788.PubMedGoogle Scholar
  38. 38.
    Goswami, A., and Rosenberg, I. (1985) J. Biol. Chem., 260, 82–85.PubMedGoogle Scholar
  39. 39.
    Hepp, K.O., and Renner, R. (1972) FEBS Lett., 20, 191–194.PubMedCrossRefGoogle Scholar
  40. 40.
    Low, M.G., and Saltiel, A.R. (1988) Science, 239, 268–275.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Vincent C. Manganiello
    • 1
  • Carolyn J. Smith
    • 1
  • Eva Degerman
    • 2
  • Valeria Vasta
    • 3
  • Hans Tornqvist
    • 2
  • Per Belfrage
    • 2
  1. 1.Laboratory of Cellular Metabolism, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Department of BiochemistryUniversity of FlorenceFlorenceItaly
  3. 3.Department of Medical and Physiological ChemistryUniversity of LundLundSweden

Personalised recommendations