Advertisement

Role of Receptor Internalization in Insulin Signalling

  • Susan C. Frost
  • Robert Risch
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 293)

Abstract

Many hormones and nutrient molecules are internalized into their target cells by the common mechanism of receptor-mediated endocytosis. This process involves the clustering of receptors into invaginated regions of the plasma membrane coated on their intracellular surface by the protein clathrin which forms a basket-like casing. This pitted region internalizes to form an independent vesicle which eventually loses its clathrin coat. Movement through the vesicular pathway allows intracellular sorting. The uptake of insulin appears to follow this path. In a variety of tissues, insulin stimulates the internalization of its own receptor upon binding (Hedo and Simpson, 1984; Krupp and Lane, 1982; Knutson et al., 1983). At some point along the endocytotic path, the hormone dissociates from the receptor and is degraded (Krupp and Lane, 1982). The receptor recycles to the plasma membrane where it can bind another insulin molecule to reinitiate the cycle. Besides stimulating receptor internalization, insulin stimulates rapid receptor autophosphorylation (Kohanski et al., 1986; White et al., 1985) activating the tyrosine kinase. The receptor is internalized in this state’(Backer et al., 1989). However, prior to recycling, the receptor is dephosphorylated (Backer et al., 1989) which inactivates the catalytic activity (Klein et al., 1987). How this kinase activity and endocytotic cycle is involved in insulin signalling is not well defined.

Keywords

Insulin Binding Receptor Internalization Free Buffer Hypotonic Treatment Potassium Depletion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Backer, J. M., Kahn, C. R., and White, M. F. (1989) Proc. Natl. Acad. Sci. USA 86. 3209–3213.PubMedCrossRefGoogle Scholar
  2. Bishayee, B., and Das, M. (1982) Arch. Biochem. Biophv. 214. 425–430.CrossRefGoogle Scholar
  3. Cheng, K., Groarke, J., Osotimehin, B., Haspel, H. C., and Sonenberg, M. (1981) J. Biol. Chem. 256. 649–655.PubMedGoogle Scholar
  4. Corvera, S. (1990) J. Biol. Chem. 265. 2413–2416.PubMedGoogle Scholar
  5. Ellis, L., Clauser, E., Morgan, D. O., Edery, M., Roth, R. A., Rutter, W. J. (1986) Cell 45, 721–732.PubMedCrossRefGoogle Scholar
  6. Fan, J. Y., Carpentier, J. L., VanObberghen, E., Blackett, N. M., Grunfeld, C., Gorden, P., and Orei, L. (1983) J. Histochem. Cytochem. 31, 859–870.PubMedCrossRefGoogle Scholar
  7. Frost, S. C, and Lane, M. D. (1985) J. Biol. Chem. 260, 2646–2652.PubMedGoogle Scholar
  8. Frost, S. C., Kohanski, R. A., and Lane, M. D. (1987) J. Biol. Chem. 262, 9872–9876.PubMedGoogle Scholar
  9. Frost, S. C., Lane, M. D., and Gibbs, E. M. (1989) J. Cell. Physiol. 141. 467–474.PubMedCrossRefGoogle Scholar
  10. Frost, S. C., and Schwalbe, M. S. (1990) Biochem. J. 269, 589–595.PubMedGoogle Scholar
  11. Gliemann, J., and Sonne, O.. (1978) J. Biol. Chem. 253, 7857–7863.PubMedGoogle Scholar
  12. Hedo, J. A. and Simpson, I. A. (1984) J. Biol. Chem. 259, 11083–11089.PubMedGoogle Scholar
  13. Jung, C. Y., and Rampal, A. L. (1977) J. Biol. Chem. 252, 5456–5463.PubMedGoogle Scholar
  14. Kasuga, M., White, M. F., and Kahn, C. R. (1985) in Methods of Enzvmology 109. 609–621.CrossRefGoogle Scholar
  15. Klein, H. H., Freidenberg, G. R., Matthaei, S., and Olefsky, J. M. (1987) J. Biol. Chem. 262, 10557–10564.PubMedGoogle Scholar
  16. Knutson, V. P., Ronnett, G. V., and Lane, M. D. (1983) J. Biol. Chem. 258. 12139–12142.PubMedGoogle Scholar
  17. Kohanski, R. A., Frost, S. C., and Lane, M. D. (1986) J. Biol. Chem. 261. 12272–12281.PubMedGoogle Scholar
  18. Kono, T., Suzuki, K., Dansey, L. E., Robinson, F. W., and Blevins, T. L. (1981) J. Biol. Chem. 256. 6400–6407.PubMedGoogle Scholar
  19. Krupp, M. N., and Lane, M. D. (1982) J. Biol. Chem. 257. 1372–1377.PubMedGoogle Scholar
  20. Lantx, R. C., Elsas, L. J., and R. L DeHaan (1980) Proc. Natl. Acad. Sci. USA 77, 3062–3066.CrossRefGoogle Scholar
  21. Larkin, J. M., Brown, M. S., Goldstein, J. L., and Anderson, R. G. W. (1983) Cell 33, 273–285.PubMedCrossRefGoogle Scholar
  22. Larkin, J. M., Donzell, W. C., and Anderson, R. G. W. (1986) J. Cell Biol. 103. 2619–2627.PubMedCrossRefGoogle Scholar
  23. Ledbetter, M. L. S., and Lubin, M. (1977) Experimental Cell Res. 105. 223–236.CrossRefGoogle Scholar
  24. Makinen, K. K. (1972) Int. J. Protein. Res. 4, 21–28.PubMedGoogle Scholar
  25. Morgan, D. O., and Roth, R. A. (1987) Proc. Natl. Acad. Sci. USA 84, 41–45.PubMedCrossRefGoogle Scholar
  26. Olefsky, J. M., and Saekow, M., (1982) Molec. and Cell. Biochem. 47, 23–29.Google Scholar
  27. Pettengell, K., and Frost, S. C. (1989) Biochem. Biophys. Res. Comm. 161. 633–639.PubMedCrossRefGoogle Scholar
  28. Poole, D. T., Butler, T. C., and Williams, M. E. (1972) Biochim. Biophvs. Acta 266. 463–470.CrossRefGoogle Scholar
  29. Reed, B. C., Glasted, K., and Miller, B. (1984) J. Biol. Chem. 259. 8134–8143.PubMedGoogle Scholar
  30. Resh, M. D., Nemenoff, R. A., and Guidotti, G. (1980) J. Biol. Chem. 255. 10938–10945.PubMedGoogle Scholar
  31. Resh, M. C. (1982) J. Biol. Chem. 257. 6978–6986.PubMedGoogle Scholar
  32. Scatchard, G. (1949) Ann. N. Y. Acad. Sci. 51, 660–672.CrossRefGoogle Scholar
  33. Shiba, T., Tobe, K., Koshio, O., Yamamoto, R., Shibasaki, Y., Matsumoto, N., Toyoshima, S., Osawa, T., Akanuma, Y., Takaku, F., Kasuga, M. (1990) Biochem. J. 267. 787–794.PubMedGoogle Scholar
  34. Smith R. M., and Jarett, L. (1982) Proc. Natl. Acad. Sci. USA 79, 7302– 7306.PubMedCrossRefGoogle Scholar
  35. Smith, R. M., Cobb, M. H., Rosen, O. M., and Jarett, L. (1985) J.Cell. Phvsiol. 123. 167–179.CrossRefGoogle Scholar
  36. Thies, R. S., Webster, N. J., and McClain, D. A. (1990) J. Biol. Chem. 265. 10132–10137.PubMedGoogle Scholar
  37. Ueda, M., Robinson, F. W., Smith, M. M., and Kono, T. (1985) J. Biol. Chem. 260, 3941–3946.PubMedGoogle Scholar
  38. White, M. F., Takayama, S., and Kahn, C. R. (1985) J. Biol. Chem. 260. 9470–9478.PubMedGoogle Scholar
  39. Wilden, P. A., Backer, J. M., Kahn, C. R., Cahill, D. A., Shroeder, G. J., and White, M. F. (1990) Proc. Natl. Acad. Sci. USA 87, 3358– 3362.PubMedCrossRefGoogle Scholar
  40. Zierler, K. L. (1957) Science 126. 1067–1068.PubMedCrossRefGoogle Scholar
  41. Zierler, K. L., and Rogus, E. M., (1981) Biochim. Biophvs. Acta 640. 687–692.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Susan C. Frost
    • 1
  • Robert Risch
    • 1
  1. 1.The Department of Biochemistry and Molecular BiologyUniversity of FloridaGainesvilleUSA

Personalised recommendations