Alcoholism pp 317-324 | Cite as

Chronic Alcoholic Skeletal Myopathy: An Overview

  • Timothy J. Peters
  • Victor R. Preedy
Part of the NATO ASI Series book series (NSSA, volume 206)


It has long been recognised that chronic alcohol abusers have defects in skeletal muscle physiology and function; the most salient manifestation of which is muscle weakness. Hitherto, most of the detailed investigations into alcoholic muscle disease have concentrated on the “acute” forms of the disease process. In contrast, very little work has been carried out on the “chronic” alcoholic myopathy. Detailed studies by various research groups, including our own, have shown that the chronic form of alcoholic muscle disease occurs very much more frequently than the acute type, and may, indeed, be one of the most common metabolic myopathies in Western societies. It occurs in approximately half to two-thirds of chronic alcohol abusers (Worden, 1976; Martin et al., 1985; Urbano-Marquez et al., 1988). Thus, it is somewhat of a paradox that chronic alcoholic myopathy is one of the least researched muscle diseases, even though the causal agent is known. Furthermore, it is likely that the underlying molecular events responsible for the loss of skeletal muscle mass may be applicable to other forms of metabolic myopathy.


Muscle Protein Protein Turnover Muscle Protein Synthesis Alcoholic Patient Skeletal Muscle Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Afting, E.G., Bemhardt, W., Janzen, R.W. and Rothig, H.J., 1981. Quantitative importance of non-skeletal muscle N“-methylhistidine and creatinine in human urine. Biochem. J, 200: 449.PubMedGoogle Scholar
  2. Aruoma, O., Laughton, MJ. and Halliwell, B. 1989. Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J., 264: 863.PubMedGoogle Scholar
  3. Bando, K., Ichihara, K., Shimotsuji, T., Toyoshima, H., Koda, K., Hayashi, C. and Miya, K., 1986. Reduced serum carnosinase activity in hypothyroidism. Ann. Clin. Biochem., 23: 190.PubMedGoogle Scholar
  4. Bando, K., Shimotsuji, T., Toyoshima, H., Hayashi, C. and Miya, K., 1984. Fluorometric assay of human carnosinase activity in normal children, adults and patients with myopathy. Ann. Clin. Biochem., 23: 190.Google Scholar
  5. Boldyrev, A.A., 1986. Biological significance of histidine-containing dipeptides. Biochemistry (USSR). 51: 1651.Google Scholar
  6. Boldyrev, A.A.; Dupin, A.M., Pindel, E.V. and Severin, S.E., 1988. Anti-oxidant properties of histidine-containing dipeptides from skeletal muscle of vertebrates. Comp. Biochem. Physiol., 89B: 245.CrossRefGoogle Scholar
  7. Del Villar Negro, A., Merino Angulo, J. and Rivera Pomar, J.M., 1984. Skeletal muscle changes in chronic alcoholic patients. A conventional, histochemical ultrastructural and morphometric study. Acta Neurol. Scand., 70: 185.Google Scholar
  8. Duane, P. and Peters, T.J., 1987. Glucocorticosteroid status in chronic alcoholics with and without skeletal muscle myopathy. Clin. Sci., 73: 601.PubMedGoogle Scholar
  9. Duane, P. and Peters, T.J., 1988a. Nutritional status in alcoholics with or without skeletal muscle myopathy. Alcohol Alcohol., 23: 271.PubMedGoogle Scholar
  10. Duane, P. and Peters, T.J., 1988b. Serum carnosinase activities in patients with alcoholic chronic skeletal muscle myopathy. Clin. Sci., 75: 185.PubMedGoogle Scholar
  11. Ford, C.S., Caldwell, S.H. and Kilgo, G.R., 1984. Acute alcoholic myopathy. Am. Family Phys., 29: 249.Google Scholar
  12. Garcia-Brunel, L., 1984. Lipid peroxidation in alcoholic myopathy and cardiomyopathy. Medical Hypotheses 13: 217.CrossRefGoogle Scholar
  13. Gibson, J.N.A., Halliday, D., Morrison, W.L., Stoward, P.J., Hornsby, G.A., Watt, P.W., Murdoch, G. and Rennie, M.J., 1987. Decrease in human quadriceps muscle protein turnover consequent upon leg immobilization. Clin. Sci., 72: 503.PubMedGoogle Scholar
  14. Hanid, A., Slavin, G., Mair, W., Sowter, C., Ward, P., Webb, J. and Levi, A., 1981. Fibre type changes in striated muscle of alcoholics. J. Clin. Pathol., 36: 772.Google Scholar
  15. Hickish, T., Colston, K.W., Bland, J.M. and Maxwell, J.D., 1989. Vitamin D deficiency and muscle strength in male alcoholics. Clin Sci., 77: 171.PubMedGoogle Scholar
  16. Hudgson, P. and Hall, R., 1982. Endocrine myopathies. In: “Skeletal Muscle Pathology”. F.L. Mastaglia and J. Walton, Eds., pp 393–408. Churchill Livingstone, Edinburgh.Google Scholar
  17. Jenkins, W., 1984. Liver disorders in alcoholism. In: “Clinical Biochemistry of Alcoholism”, Rosalki, S.B., ed., pp 258–270, Churchill Livingstone, Edinburgh.Google Scholar
  18. Jennekens, F.G.I., 1982. Neurogenic disorders of muscles. In: “Skeletal Muscle Pathology”. F.L. Mastaglia and J. Walton, eds., pp 204–234. Churchill Livingstone, Edinburgh.Google Scholar
  19. Kelly, D.A., Sherkin, A., Coe, A. and Walker-Smith, J.A., 1987. Skeletal myopathy secondary to selenium deficiency. Gut, 28: 75.CrossRefGoogle Scholar
  20. McDonald, J.T. and Margen, S., 1976. Wine versus ethanol in human nutrition. I. Nitrogen and calorie balance. Am. Clin. Nutr., 29: 1093.Google Scholar
  21. Marchesini, G., Zoli, M., Angiolini, A., Dondi, C., Bianchi, F. B. and Pisi, E., 1981. Muscle protein breakdown in liver cirrhosis and the role of altered carbohydrate metabolism. Hepatology, 1: 294.PubMedCrossRefGoogle Scholar
  22. Machlin, L.J., Filipski, R., Nelson, J., Horn, L.R. and Brin, M., 1977. Effects of a prolonged vitamin E deficiency. J. Nutr., 107: 1200.PubMedGoogle Scholar
  23. Martin, F.C., Levi, A.J., Slavin, G. and Peters, Ti., 1984. Glycogen content and activities of key glycolytic enzymes in muscle biopsies from control, subjects and patients with chronic alcoholic skeletal myopathy. Clin. Sci., 66: 69.PubMedGoogle Scholar
  24. Martin, F.C. and Peters, T.J., 1985. Assessment in vitro and in vivo of muscle degradation in chronic skeletal muscle myopathy of alcoholism. Clin. Sci., 68: 693.Google Scholar
  25. Martin, F.C., Slavin, G., Levi, Ai. and Peters, T.J. 1984 Investigation of the organelle pathology of skeletal muscle in chronic alcoholism. J. Clin. Pathol., 37: 448.PubMedCrossRefGoogle Scholar
  26. Martin, F.C., Ward, K., Slavin, G., Levi, A.J. and Peters, Ti., 1985. Alcoholic skeletal myopathy, a clinical and pathological study. Quart. J. Med., 55: 233.PubMedGoogle Scholar
  27. Mills, K.R., Ward, K., Martin, F. and Peters, Ti., 1986. Peripheral neuropathy and myopathy in chronic alcoholism. Alcohol Alcohol., 21: 357.PubMedGoogle Scholar
  28. Morrison. W. L., Bouchier, I. A. D., Gibson, J. N. A. and Rennie, M.J., 1990. Skeletal muscle and whole-body turnover in cirrhosis. Clin. Sci., 78: 413.Google Scholar
  29. Orndahl, G., Sellden, U., Hallin, S., Wetterqvist, H., Rindby, A. and Selin, E., 1986. Myotonic dystrophy-treated with selenium and vitamin E. Acta Med. J. Scand., 219: 407.CrossRefGoogle Scholar
  30. Pacy, P.J., Read, M., Preedy, V.R., Peters, Ti. and Halliday, D., 1988. Whole body leucine kinetics and fractional quadricep muscle synthetic rate (MPSR) in alcoholic patients. Clin. Sci., supplement 19, 36 p.Google Scholar
  31. Preedy, V.R. and Peters, P.J., 1988. The effects of chronic ethanol ingestion on protein metabolism in Type I and II fibre-rich skeletal muscle of the rat. Biochem. J., 254: 631.PubMedGoogle Scholar
  32. Preedy, V.R. and Peters, P.J., 1990. Alcohol and skeletal muscle disease. Alcohol Alcohol., 25: 177.PubMedGoogle Scholar
  33. Reinus, J.F., Heymsfield, R.W., Casper, K. and Galambos, U.J.T., 1989. Ethanol: Relative fuel value and metabolic effects in vivo. Metabolism. 38: 125.PubMedCrossRefGoogle Scholar
  34. Riley, D.A., Ellis, S. and Bain, J.L.W., 1988. Catalase microperoxisomes in rat soleus and extensor digitorum longus muscle fibre types. J. Histochem. Cytochem., 36: 633.PubMedCrossRefGoogle Scholar
  35. Slavin, G., Martin, F., Ward, P., Levi, J. and Peters T. J., 1983. Chronic alcoholic excess is associated with selective but reversible injury to type 2B muscle fibres. J. Clin. Pathol., 36: 772.PubMedCrossRefGoogle Scholar
  36. Slavin, G., Sowter, C., Ward, P. and Paton, K., 1982. Measurement of striated muscle fibre diameters using interactive computer-aided microscopy. J. Clin. Pathol., 35: 1268.PubMedCrossRefGoogle Scholar
  37. Spargo, E. 1981. Alcohol and muscle disease. Br. J. Alcohol Alcohol., 16: 124.Google Scholar
  38. Sunnasy, D., Cairns, S. R., Martin, F., Slavin, G, and Peters, T. J., 1983. Chronic alcoholic skeletal myopathy: a clinical, histological and biochemical assessment of muscle lipid. J. Clin. Pathol., 36: 778.PubMedCrossRefGoogle Scholar
  39. Trounce, I., Byrne, E., Dennett, X., Santamaria, J., Doery, J. and Peppard, R., 1987. Chronic alcoholic proximal wasting: physiological, morphological and biochemical studies in skeletal muscle. Aust.N.Z. J. Med., 17:413.Google Scholar
  40. Urbano-Marquez, A. Estruch, R., Navarro-Lopez, F., Grau, J.M., Mont, L. and Rubin, E., 1989. The effect of alcoholism on skeletal and cardiac muscle. New Engl. J. Med 320: 409.Google Scholar
  41. Van Thiel, D.H. and Gavaler, J.S., 1990. Endocrine consequences of alcohol abuse. Alcohol Alcohol., 25: 341.PubMedGoogle Scholar
  42. Ward, R.J., Jutla, J., Duane, P.D. and Peters, T.J., 1988. Reduced anti-oxidant status in patients with chronic alcoholic myopathy. Biochem. Soc. Trans., 16: 581.Google Scholar
  43. Waterlow, J.C., 1984. Protein turnover with special reference to man. Quart. J. Exp. Physiol., 69: 409.Google Scholar
  44. Waterlow, J.C., Garlick, P.J. and Millward, D.J., 1978. Protein Turnover in Mammalian Tissues and in the Whole-body. North Holland, Amsterdam.Google Scholar
  45. Worden, R.E., 1976. Pattern of muscle and nerve pathology in alcoholism. Proc. N.Y. Acad. Sci., 273: 351.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Timothy J. Peters
    • 1
  • Victor R. Preedy
    • 1
  1. 1.Department of Clinical BiochemistryKing’s College School of Medicine and DentistryLondonUK

Personalised recommendations