Alcoholism pp 223-235 | Cite as

Alcohol Abuse and Fuel Homeostasis

  • T. Norman Palmer
  • Elisabeth B. Cook
  • Paul G. Drake
Part of the NATO ASI Series book series (NSSA, volume 206)


Ethanol has profound effects on whole-body fuel homeostasis and nutrition: Chronic alcohol abuse is recognised to be the primary cause of malnutrition in developed countries (see Lieber, 1988; World et al., 1985; Morgan and Levine, 1988; Halsted and Keen, 1990; Wheeler, 1990; Halsted, 1991). This is in part because fuel homeostasis in man is dependent on complex inter-organ relationships that govern the supply and utilization of energy substrates. The interaction of ethanol with fuel metabolism in any one specific tissue has the capacity to compromise these inter-organ axes in substrate supply and disposal and to have systemic effects on fuel homeostasis. It is therefore necessary to approach the question of alcohol-related malnutrition and impaired fuel metabolism from the perspective of whole-body fuel homeostasis.


Extensor Digitorum Longus Glucose Disposal Ethanol Oxidation Hepatic Glycogen Fuel Metabolism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Berger, M.I., Hagg, S.A., Goodman, M.N. and Ruderman, N.B., 1976, Glucose metabolism in perfused skeletal muscle. Effects of starvation, diabetes, fatty acids, acetoacetate, insulin and exercise on glucose uptake and disposition. Biochem. J., 158: 191.PubMedGoogle Scholar
  2. Bunout, D., Petermann, M. and Iturriaga, H., 1987. Nitrogen economy in alcoholic patients without liver disease. Metabolism Clin. Exp., 36: 651.CrossRefGoogle Scholar
  3. Cavalto-Perin, P. Cassader, M., Bozzo, C., Bruno, A., Nuccio, P., Dall’Orno, A.M., Marucci, M. and Pagano, G., 1985, Mechanism of insulin resistance in human liver cirrhosis. Evidence of a combined receptor and postreceptor defect. J. Clin. Invest., 75: 1659.CrossRefGoogle Scholar
  4. Chang, T., Lewis, J. and Glazko, AJ., 1967, Effects of ethanol and other alcohols on the transport of amino-acids and glucose by everted sacs of rat small intestine. Biochim. Biophys. Acta, 135: 1000.PubMedCrossRefGoogle Scholar
  5. Cook, E.B., Preece. J.A., Tobin, S.D.M., Sugden, M.C., Cox, D.J. and Palmer, T.N., 1988, Acute inhibition by ethanol of intestinal absorption of glucose and hepatic glycogen synthesis on glucose re-feeding after starvation in the rat. Biochem. J., 254: 59.PubMedGoogle Scholar
  6. Cox, DJ. and Palmer, T.N., 1988, The role of skin in glucose disposal on re-feeding after starvation. Biochem. Soc. Trans. 16: 332.Google Scholar
  7. Cox, D.J., Sugden, M.C. and Palmer, T.N., 1988, Ethanol and glucose disposal in the rat Biochem. Soc. Trans., 16: 247.PubMedGoogle Scholar
  8. Cox, D.J., Sugden, M.C. and Palmer, T.N., 1989, Glucose disposal as glycogen on glucose re-feeding after starvation. Biochem. Soc. Trans., 17: 155.Google Scholar
  9. Crouse, J.R., Gerson, C.D., DeCarli, L.M. and Lieber, C.S., 1968, Role of acetate in the reduction of plasma fatty acids produced by ethanol in man. J. Lipid Res., 9: 509.PubMedGoogle Scholar
  10. Domhorst, A. and Ouyang, A., 1971, Effect of alcohol on glucose tolerance. Lancet 2: 957.CrossRefGoogle Scholar
  11. Drake, P.G., Palmer, T.N. and Cox, D.J., 1989, Site of glucose disposal on glucose refeeding after starvation. Biochem. Soc. Trans., 17: 154.Google Scholar
  12. Dully, C.C., Bocek, R.M. and Beatty, C.H., 1969, Presence of two or more glucose-6phosphate pools in voluntary skeletal muscle and their sensitivity to insulin. Endocrinology 84: 855.PubMedCrossRefGoogle Scholar
  13. Ferré, P., Leturque, A., Burnol, A.-F., Pénicaud, L. and Girard, J., 1985, A method to quantify glucose utilization in vivo in skeletal muscle and white adipose tissue of the anaesthetized rat. Biochem. J., 228: 103.PubMedGoogle Scholar
  14. Feingold, K.R. and Siperstein, M.D., 1983, Normalization of fasting blood glucose levels in insulin-requiring diabetes: The role of ethanol abstention. Diabetes Care 6: 186.PubMedCrossRefGoogle Scholar
  15. French, S.W., 1991, The molecular pathology of alcoholic liver disease: An overview. In: ‘Alcoholism: A molecular perspective’, T.N. Palmer, ed., pp 55–67, Plenum Press, New York, pp.Google Scholar
  16. Halsted, C.H., 1991, Chronic alcoholism, malnutrition, and folate deficiency. In: ‘Alcoholism: A Molecular Perspective’, T.N. Palmer, ed., pp XXX-XXX, Plenum Press, New York and London.Google Scholar
  17. Halsted, C.H. and Keen, C.L., 1990, Alcoholism and micronutrient metabolism and deficiencies. Eur. J. Gastroent. Hepatol., 2: 399.Google Scholar
  18. Hoffman, R.S. and Goldfrank, L.R., 1989, Ethanol-associated metabolic disorders. Emerg. Med. Clin. North Amer., 7: 943.Google Scholar
  19. Holness, M.J. and Sugden, M.C., 1989, Pyruvate dehydrogenase activities during the fedto-starved transition and on re-feeding after acute and prolonged starvation. Biochem. J., 258: 529.PubMedGoogle Scholar
  20. Holness, M.J. and Sugden, M.C., 1990, Glucose utilization in heart, diaphragm and skeletal muscle during the fed-to-starved transition. Biochem. J., 270: 245.PubMedGoogle Scholar
  21. Holness, Mi., Schuster-Bruce, M.J.I. and Sugden, M.C., 1988, Skeletal-muscle glycogen synthesis during the starved-to-fed transition in the rat. Biochem. J., 254: 855.PubMedGoogle Scholar
  22. Huang, M.T. and Veech, R.L., 1988, Role of the direct and indirect pathways for glycogen synthesis in rat liver in the postprandial period. J. Clin. Invest. 81: 872.PubMedCrossRefGoogle Scholar
  23. Issad, T., Pénicaud, L., Ferré, P., Kandé, J., Baudon, M.-A. and Girard, J., 1987, Effects of fasting on tissue glucose utilization in conscious rats. Major glucose-sparing effect in working muscle. Biochem. J., 246: 241.PubMedGoogle Scholar
  24. Jackson, R.A., Hamling, J.B., Sim., B.M., Hawa, M.I., Blix, P.M. and Nabarro, J.D.N., 1987, Peripheral lactate and oxygen metabolism in man: the influence of oral glucose loading. Metabolism 36: 144.PubMedCrossRefGoogle Scholar
  25. James, D.E., Jenkins, A.B. and Kraegen, E.W., 1985, Heterogeneity of insulin action in individual muscles in vivo: euglycemic clamp studies in rats. Am. J. Physiol. 248: E567.PubMedGoogle Scholar
  26. Jorfeldt, L. and Juhlin-Dannfelt, A., 1977, The influence of ethanol on human splanchnic and skeletal muscle metabolism during exercise. Scand. J. Clin. Invest., 37: 609.PubMedCrossRefGoogle Scholar
  27. Jorfeldt, L. and Juhlin-Dannfelt, A., 1978, The influence of ethanol on human splanchnic and skeletal muscle metabolism during exercise. Metabolism 27: 97.PubMedCrossRefGoogle Scholar
  28. Juhlin-Dannfelt, A., Ahlborg, G., Hagenfeldt, L., Jorfeldt, L. and Felig, P., 1977, Influence of ethanol on splanchnic and skeletal muscle substrate turnover during prolonged exercise in man. Am. J. Physiol., 233: E195.PubMedGoogle Scholar
  29. Katz, J., Kuwajima, M., Foster, D.W. and McGarry, J.D., 1986, The glucose paradox: new perspectives on hepatic carbohydrate metabolism. Tr. Biochem. Sci., 11, 136.CrossRefGoogle Scholar
  30. Kreisberg, R.L., Siegel, A.M. and Owen, W.C., 1971, Glucose-lactate interrelationships: Effect of ethanol. J. Clin. Invest., 50: 175.PubMedCrossRefGoogle Scholar
  31. Kruszynska, Y., Williams, N., Perry, M. and Home, P., 1988, The relationship between insulin sensitivity and skeletal muscle enzyme activities in hepatic cirrhosis. Hepatol., 8: 1615.CrossRefGoogle Scholar
  32. Landau, B.R,. and Wahren, J., 1988, Quantification of the pathways followed in hepatic glycogen formation from glucose. FASEB J., 2: 2368.Google Scholar
  33. Lang, C.H., Bagby, GJ., Blakesley, H.L., Johnson, J.L. and Spitzer, J.J., 1986, Plasma glucose concentrations determines direct versus indirect liver glycogen synthesis. Am. J. Physiol. 251: E584.PubMedGoogle Scholar
  34. Laposata, E.A. and Lange, L.G., 1986, Presence of nonoxidative ethanol metabolism in human organs commonly damaged by ethanol abuse. Science 231: 497.PubMedCrossRefGoogle Scholar
  35. Lewis, H. and Kendall, MJ., 1988, Alcohol and the treatment of diabetes. J. Clin. Pharm. Ther., 13: 321.PubMedCrossRefGoogle Scholar
  36. Lieber, C.S., 1982, Ethanol and lipid disorders, including fatty liver, hyperlipidemia and atherosclerosis. In: ‘Medical Disorders of Alcoholism: Pathogenesis and Treatment’, C.S. Lieber, ed., pp 141–177, W.B. Saunders, Philadelphia.Google Scholar
  37. Lieber, C.S., 1988, The influence of alcohol on nutritional status. Nutr. Rev., 46: 241.PubMedCrossRefGoogle Scholar
  38. Lieber, C.S., 1991, Pathways of ethanol metabolism and related pathology. In: ‘Alcoholism: A Molecular Perspective’, T.N. Palmer, ed., pp 1–25, Plenum Press, New York and London.Google Scholar
  39. Lieber, C.S. and DeCarli, L.M., 1982, The feeding of alcohol in liquid diets: two decades of applications and 1982 update. Alcohol: Clin. Exp. Res., 6: 523.CrossRefGoogle Scholar
  40. Lochner, A., Wulff, J. and Madison, L.L., 1967, Ethanol-induced hypoglycemia: the acute effects of ethanol on hepatic glucose output and peripheral glucose utilization in fasted dogs. Metab. Clin. Exp., 16: 1.PubMedCrossRefGoogle Scholar
  41. Martin, F.C., Levi, A.J., Slavin, G. and Peters, TJ., 1984, Glycogen content and activities of key glycolytic enzymes in muscle biopsies from control subjects and patients with chronic alcoholic skeletal myopathy. Clin. Sci., 66: 69.PubMedGoogle Scholar
  42. Martin, F.C., Ward, K., Slavin, G., Levi, A.J. and Peters, TJ., 1985, Alcoholic skeletal myopathy, a clinical and pathological study. Quat. J. Med., 55: 233.Google Scholar
  43. McDonald, J.T. and Margan, S., 1976, Wine versus ethanol in human nutrition. I. Nitrogen and calorie balance. Amer. J. Clin. Nutr., 29: 1093.PubMedGoogle Scholar
  44. McMonagle, J. and Felig, P., 1975, Effect of ethanol ingestion on glucose tolerance and insulin secretion in normal and diabetic subjects. Metab. Clin. Exp., 24: 625.PubMedCrossRefGoogle Scholar
  45. McGarry, J.D., Kuwajima, M., Newgard, C.B. and Foster, D.W., 1987, From dietary glucose to liver glycogen: The full circle round, Annu. Rev. Nutr., 7: 51.PubMedCrossRefGoogle Scholar
  46. Morgan, M.Y. and Levine, J.A., 1988, Alcohol and nutrition. Proc. Nutr. Soc., 47: 85.PubMedCrossRefGoogle Scholar
  47. Nikkila, E.A. and Taskinen, M.R., 1975, Ethanol-induced alterations in glucose tolerance, postglucose hypoglycemia and insulin secretion in normal, obese, and diabetic subjects. Diabetes 24: 933PubMedCrossRefGoogle Scholar
  48. Oscai, L.B., Gorski, J., Miller, W.C. and Palmer, W.K., 1988, Role of the alkaline TG lipase in regulating intramuscular TG content. Med. Sci. Sports Exerc., 20: 539.PubMedGoogle Scholar
  49. Palmer, T.N., 1990, Fuel homeostasis and alcohol abuse. Eur. J. Gastroent. Hepatol., 2: 406.Google Scholar
  50. Palmer, T.N., Caldecourt, M.A., Snell, K. and Sugden, M.C., 1985, Alanine and inter-organ relationships in branched-chain amino acid and 2-oxo acid metabolism. Biosci. Rep., 5: 1015.PubMedCrossRefGoogle Scholar
  51. Perkoff, G.T., Hardy, D. and Velez-Garcia, E., 1966, Reversible acute muscular syndrome in chronic alcoholism. New Engl. J. Med., 274: 1277.PubMedCrossRefGoogle Scholar
  52. Peters, T.J. and Preedy, T.J., 1991, Chronic alcoholic skeletal myopathy: An overview. In: ‘Alcoholism: A molecular perspective’, ed. T.N. Palmer, pp. 301–308, Plenum Press, New York and London.Google Scholar
  53. Phillips, G.B. and Safrit, H.F., 1971, Alcoholic diabetes, JAMA 217: 1513.PubMedCrossRefGoogle Scholar
  54. Pilkis, S.J., Regen, D.M., Claus, T.H. and Cherrington, A.D., 1985, Role of hepatic glycolysis and gluconeogenesis in hepatic glycogen synthesis. Bio Essays 2: 273.Google Scholar
  55. Preedy, V.R. and Peters, T.J., 1988a, The effect of chronic ethanol ingestion on protein metabolism in Type-I- and Type-II-fibre-rich skeletal muscles of the rat. Biochem. J., 254: 631.PubMedGoogle Scholar
  56. Preedy, V.R. and Peters, Ti., 1988b, Acute effects of ethanol on protein synthesis in different muscles and muscle protein fractions of the rat. Clin. Sci., 74: 461.PubMedGoogle Scholar
  57. Preedy, V.J., Duane, P. and Peters, T.J., 1988, Biological effects of chronic alcohol consumption: a reappraisal of the Lieber-DeCarli liquid-diet model with reference to skeletal muscle. Alcohol Alcohol., 23: 151.PubMedGoogle Scholar
  58. Preedy, V.R., Siddiq, T., Cook, E., Black, D., Palmer, T.N. and Peters, T.J., 1991, Alcohol and protein turnover. In: ‘Alcoholism: A molecular perspective’, ed. T.N. Palmer, pp. 241–255, Plenum Press, New York and London.Google Scholar
  59. Reinus, J.F., Heymsfield, S.B., Wiskind, R., Casper, K. and Galambos, J.T., 1989, Ethanol: relative fuel value and metabolic effects in vivo. Metabolism, 38: 125.PubMedCrossRefGoogle Scholar
  60. Radzuik, J., 1989a, Hepatic glycogen in humans. I. Direct formation after oral or intravenous glucose or after 24 hour fast. Am. J. Physiol. 257: E145.Google Scholar
  61. Radzuik, J., 1989b, Hepatic glycogen in humans. I. Gluconeogenic formation after oral or intravenous glucose. Am. J. Physiol. 257: E158.Google Scholar
  62. Randle, P.J., 1964, the interrelationship of hormones, fatty acid and glucose in the provision of energy. Postgrad. Med. J., 40: 457.Google Scholar
  63. Randle, P.J., 1981, Molecular mechanisms regulating fuel selection in muscle. In: ‘Biochemistry of Exercise’, J. Poortmans and G. Niset, eds., Vol. IV-A, pp. 13–32, University Park Press, Baltimore.Google Scholar
  64. Randle, Pi. and Tubbs, P.K., 1979, Carbohydrate and fatty acid metabolism. In: ‘Handbook of Physiology: The Cardiovascular System’, R.M. Berne, ed., Vol. 1, pp 805–844, American Physiological Society, Bethesda.Google Scholar
  65. Rodrigo, C., Antezana, C. and Baraona, E., 1971, Fat and nitrogen balances in rats with alcohol-induced fatty liver. J.Nutr., 101: 1307.PubMedGoogle Scholar
  66. Rogers, J., Smith, J., Stainer, G.A. and Whitfield, J.B., 1987, Differing effects of carbohydrate, fat and protein on the rate of ethanol metabolism. Alcohol Alcohol., 22: 345.PubMedGoogle Scholar
  67. Rognstad, R., 1989, Errors in isotopic estimations of hepatic glycogen synthesis and glucose output. Metabolism 7: 619.CrossRefGoogle Scholar
  68. Shankar, T.P., Solomon, S.S., Duckworth, W.C., Himmelstein, S., Gray, S., Jerkins, T., Bobal, M.A. and Ramamurthy, S.I., 1983, Studies on glucose intolerance in cirrhosis of the liver. J. Lab. Clin. Med., 102: 459.PubMedGoogle Scholar
  69. Shah, J.H., 1988, Alcohol decreases insulin sensitivity in healthy subjects. Alcohol Alcohol., 23: 103.PubMedGoogle Scholar
  70. Shelmet, J.J., Reichard, G.A., Skutches, C.L., Hoeldtke, R.D., Owen, O.O. and Boden, G., 1988, Ethanol causes acute inhibition of carbohydrate, fat, and protein oxidation and insulin resistance, J. Clin. Invest., 81: 1137.PubMedCrossRefGoogle Scholar
  71. Shelmet, J.J., Reichard, G.A., Skutches, C.L., Hoeldke, R.D., Owen, O.E. and Boden, G., 1988, Ethanol causes acute inhibition of carbohydrate, fat, and protein oxidation and insulin resistance. J. Clin. Invest., 81: 1137.PubMedCrossRefGoogle Scholar
  72. Singh, S.P., Kumar, Y., Snyder, A.K., Ellyin, F.E. and Gilden, J.L., 1988, Effect of alcohol on glucose tolerance in normal and noninsulin-dependent diabetic subjects. Alcoholism 12: 727.PubMedGoogle Scholar
  73. Slavin, G., Martin, F., Ward, K., Levi„ J. and Peters, T.J., 1983, Chronic alcohol excess is associated with selective but reversible injury to type 2B muscle fibres. J. Clin. Pathol., 36: 772.PubMedCrossRefGoogle Scholar
  74. Soley, M., Chieri, R., Llobera, M. and Herrera, E., 1985a, Glucose infused through the portal vein enhances liver gluconeogenesis and glycogenesis from [3–14C]glucose in the starved rat. Int. J. Biochem. 17: 685.PubMedCrossRefGoogle Scholar
  75. Soley, M., Chieri, R. and Herrera, E., 1985b, Short-term insulin infused through the portal vein enhances liver gluconeogenesis and glycogenesis from [3–14C]glucose in the starved rat. Int. J. Biochem. 17: 689.PubMedCrossRefGoogle Scholar
  76. Sugden, M.C., Holness, M.J. and Palmer, T.N., 1989, Fuel selection and carbon flux during the starved-to-fed transition. Biochem. J., 263: 313.PubMedGoogle Scholar
  77. Sunnasy, D., Cairns, S.R., Martin, F., Slavin, G. and Peters, T.J., 1983, Chronic alcoholic skeletal myopathy: a clinical, histological and biochemical assessment of muscle lipid. J. Clin. Pathol., 36: 778.PubMedCrossRefGoogle Scholar
  78. Taylor, R., Heine, R.J., Collins, J., James, O.F.W. and Alberti, K.G.M.M., 1985, Insulin action in cirrhosis. Hepatol., 5: 64.CrossRefGoogle Scholar
  79. Urbano-Marquez, A., Estruch, A., Navarro-Lopez, F., Grau, J.M., Mont, L. and Rubin, E., 1989, The effects of alcoholism on skeletal and cardiac muscle. New Engl. J. Med., 320: 409.PubMedCrossRefGoogle Scholar
  80. Ward, K. and Peters, Ti., 1983, Ischaemic lactate response in alcoholism - a reappraisal. Clin. Sci., 65: 21 P.Google Scholar
  81. Wheeler, E.F., 1990, The effect of alcohol abuse on energy and nutrient intake. Europ. J. Gastroent. Hepatol., 2: 395.Google Scholar
  82. World., M.J., Ryle, P.R. and Thomson, A.D., 1985, Alcoholic malnutrition and the small intestine. Alcohol and Alcoholism, 20: 89.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • T. Norman Palmer
    • 1
  • Elisabeth B. Cook
    • 2
  • Paul G. Drake
    • 1
  1. 1.Department of BiochemistryUniversity of Western AustraliaNedlands, PerthAustralia
  2. 2.Department of Clinical BiochemistryKing’s College Hospital School of Medicine and DentistryLondonUK

Personalised recommendations