Alcoholism pp 183-196 | Cite as

The Role of Calcium Channels in Ethanol Dependence

  • H. J. Little
  • J. M. Littleton
Part of the NATO ASI Series book series (NSSA, volume 206)


Calcium channels in neurones are divided into those activated by neurotransmitter-receptor interactions, and voltage-operated channels. The conductance of the latter increases as the membrane potential decreases. Calcium ions also act as second messengers and are involved in many neuronal functions, including postsynaptic responses and neurotransmitter release. Calcium in the cytosol interacts with calmodulin and other calcium-sensitive proteins


Calcium Channel Calcium Channel Antagonist Chronic Ethanol Ethanol Tolerance Ethanol Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike, N., Kostyuk, P.G. and Osipchuk, Y.V., 1989, Dihydropyridine sensitive low-threshold calcium channels in isolated rat hypothalamic neurones., J. Physiol., 412: 181PubMedGoogle Scholar
  2. Battaini, F., Del Vasco, R., Govoni, S. and Trabucci, M., 1989, Chronic alcohol intake modifies phorbol ester binding in selected rat brain areas., Alcohol, 6: 169PubMedCrossRefGoogle Scholar
  3. Bean, B.P., 1984, Nitrendipine block of cardiac calcium channels: high affinity binding to the inactivated state., Proc. Natl. Acad. Sci., 81: 6388Google Scholar
  4. Bergamaschi, A., Govoni, S., and Trabucchi, M., 1987, Alcohol and calcium interactions at the CNS level: an in vivo study., Pharmacol. Res. Commun., 19: 975Google Scholar
  5. Bongianni, F., Carla, V., Moroni, F. and Pellegrini-Giampietro, D.E., 1986, Calcium channel inhibitors suppress the morphine-withdrawal syndrome in rats., Br. J. Pharmacol., 88:561Google Scholar
  6. Brennan, C.H., and Littleton, J.M., 1990, Second messengers involved in genetic regulation of the number of calcium channels in bovine adrenal chromaffin cells in culture., Neuropharmacology, 29: 689PubMedCrossRefGoogle Scholar
  7. Brennan, C.H., Lewis, A. and Littleton, J.M., 1989, Membrane receptors involved in upregulation of calcium channels in bovine adrenal chromaffin cells, chronically exposed to ethanol., Neuropharmacology, 28: 1303PubMedCrossRefGoogle Scholar
  8. Brennan, C.H., Crabbe, J. and Littleton, J.M., 1990 Genetic regulation of dihydropyridinesensitive calcium channels may determine susceptibility to alcohol physical dependence. Neuropharmacology, 29: 429PubMedCrossRefGoogle Scholar
  9. Carlen, P.L., Gurevich, N. and Durand, D., 1982, Ethanol in low doses augments calcium-mediated mechanisms measured intracellularly in hippocampal neurones., Science, 215: 306PubMedCrossRefGoogle Scholar
  10. Davidoff, R.A., 1973, Alcohol and presynaptic inhibition in an isolated spinal cord preparation., Arch. Neurol., 28: 60Google Scholar
  11. Dolin, SJ. and Little, H.J., 1989a, Effects of the calcium antagonist, nitrendipine, on N2O anaesthesia, tolerance and physical dependence., Anaesthesiology, 70: 91CrossRefGoogle Scholar
  12. Dolin, S.J. and Little, HJ., 1989b, Are changes in neuronal calcium channels involved in ethanol tolerance?, J. Pharmacol. Exp. Ther., 250: 985Google Scholar
  13. Dolin, S.J., Little, H.J., Hudspith, M., Pagonis, C. and Littleton, J., 1987, Increased dihydropyridine sensitive calcium channels in rat brain may underly ethanol physical dependence., Neuropharmacology, 26: 275PubMedCrossRefGoogle Scholar
  14. Dolin, S.J., 1988, The effects of calcium antagonists on sedative drug action in rodents: anaesthesia, physical dependence and tolerance., PhD Thesis, University of LondonGoogle Scholar
  15. File, S.E., Baldwin, H.A. and Hitchcott, P.K., 1989, Flumazenil but not nitrendipine reverses the increased anxiety during ethanol withdrawal in the rat., Psychopharmacology, 98: 262PubMedCrossRefGoogle Scholar
  16. Greenberg, D.A. and Cooper, E.C., 1984, Effect of ethanol on [3H]-nitrendipine binding to calcium channels in brain membranes., Alcoholism Clin. Exp. Res., 8: 568Google Scholar
  17. Gruol, D.L., 1982, Ethanol alters synaptic activity in cultured spinal neurones., Brain Res., 243: 25Google Scholar
  18. Guppy, L.J. and Littleton, J.M., 1989, Increased [3H]-dihydropyridine binding in brain, heart and smooth muscle of ethanol-dependent rats. Br. J. Pharmacol., 92: 662 PGoogle Scholar
  19. Harper, J.C., Brennan, C.H. and Littleton, J.M., 1989, Genetic upregulation of calcium channels in a cellular model of ethanol dependence., Neuropharmacology, 28: 1299PubMedCrossRefGoogle Scholar
  20. Harper, J. C. and Littleton, J. M. 1990, Alcohol tolerance in bovine adrenal chromaffin cells. Alc. Clin. Exp. Res., 14: 508Google Scholar
  21. Harris, R.A., Jones, S.B., Bruno, P. and Bylund, D.B., 1985, Effects of dihydropyridine derivatives and anticonvulsant drugs on [3H]-nitrendipine binding and calcium and sodium fluxes in brain., Biochem. Pharmacol., 34: 2187Google Scholar
  22. Hernandez-Cruz, A. and Pape, H. C., 1989, Indentification of two calcium currents in acutely dissociated neurones from the rat lateral geniculate nucleus. J. Neurophys., 61, 1270–1283Google Scholar
  23. Hirning, L.D., Fox, A.P., McCleskey, E.W., Olivera, R.M., Thayer, S.A., Miller, R.J. and Tsien, R.W., 1988, Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurones., Science, 239: 57PubMedCrossRefGoogle Scholar
  24. Hoffmeister, F., Benz, U., Heise, A., Krause, H.P. and Neuser, V., 1982, Behavioural effects of nimodipine in animals., Arzneim-Forsch., 32: 347Google Scholar
  25. Hudspith, M., John, G.R., Nhamburo, P.T. and Littleton, J.M., 1985, Effect of ethanol in vitro and in vivo on Ca2+ activated metabolism of membrane phospholipids in rat synaptosomal and brain slice preparations., Alcohol, 2: 133PubMedCrossRefGoogle Scholar
  26. Hudspith, M.J., Brennan, C.H., Charles, S., and Littleton, J.M., 1987, Dihydropyridinesensitive calcium channels and inositol phospholipid metabolism in ethanol physical dependence., Ann. N.Y. Acad. Sci., 492: 156Google Scholar
  27. Isaacson, R.L., Molina, J.C., Draski, L.J. and Johnston, J.E., 1985, Nimodipine interactions with other drugs, 1. Ethanol., Life Sci., 36: 2195CrossRefGoogle Scholar
  28. Koppi, S., Eberhardt, G., Haller, R. and Konig, P., 1987, Calcium channel blocking agent in the treatment of acute alcohol withdrawal. Caroverine versus meprobamate in a randomized double blind study., Neuropsychobiol., 17: 49Google Scholar
  29. Kril, J.J., Gundlach, A.L., Dodd, P.R., Johnston, G.A.R. and Harper, C.G., 1989, Cortical dihydropyridine binding sites are unaltered in human alcoholic brain., Ann. Neurol., 26: 395Google Scholar
  30. Little, H.J., Dolin, S.J. and Halsey, M.J., 1986, Calcium channel antagonists decrease the ethanol withdrawal syndrome., Life Sci., 39: 2059Google Scholar
  31. Littleton, J., Harper, J., Hudspith, M., Pagonis, Dolin, S.J. and Little, H.J., 1988, Adaptation in neural Ca2+ channels may cause alcohol physical dependence, in: The Psychopharmacology of Addiction., ed., M. Lader, pp 61–72Google Scholar
  32. Littleton, J.M., Little, H.J. and Whittington, M.A., 1990, Effects of dihydropyridine calcium channel antagonists in ethanol withdrawal; doses required, stereospecificity and actions of BAY K 8644, Psychopharmacology, 100: 387PubMedCrossRefGoogle Scholar
  33. Lucchi, L., Govoni, S., Battaini, F., Pasinetti, G. and Trabucci, M., 1985, Ethanol administration in vivo alters calcium ions control in rat striatum., Brain Res., 332: 376Google Scholar
  34. Marks, S.S., Watson, D.L., Carpenter, C.L., Messing, R.O. and Greenberg, D.A., 1989, Comparative effects of chronic exposure to ethanol and calcium channel antagonists on calcium channel antagonist receptors in cultured neural (PC12) cells., J. Neurochem., 53: 168Google Scholar
  35. Marks, S.S., Watson, D.L., Carpenter, C.L., Messing, R.O. and Greenberg, D.A., 1989, Comparative effects of chronic exposure to ethanol and calcium channel antagonists on calcium channel antagonist receptors in cultured neural (PC12) cells., J. Neurochem., 53: 168Google Scholar
  36. Messing, R.O., Carpenter, C.L., Diamond, I. and Greenberg, D.A., 1986, EthanolGoogle Scholar
  37. regulates calcium channels in clonal neural cells., Proc. Natl. Acad. Sci. 83:6213Google Scholar
  38. Miller, R.J., 1987, Multiple calcium channels and neuronal function., Science, 235:46 Nowycky, M.C., Fox, A. and Tsien, R.W., 1985, Three types of neuronal calcium channel with different calcium agonist sensitivity., Nature, 316: 440Google Scholar
  39. O’Neill, S.K. and Bolger, G.T., 1988, Enantiomer selectivity and the development of tolerance to the behavioural effects of the calcium channel activator, Bay K 8644., Brain Res. Bull., 21: 865Google Scholar
  40. Panza, G., Grebb, J.A., Sanna, E., Wright, A.G. and Hanbauer, L., 1985, Evidence for down regulation of [3H]-nitrendipine recognition sites in mouse brain after long term treatment with nifedipine or verapamil., Neuropharmacology, 24: 1113PubMedCrossRefGoogle Scholar
  41. Pucilowski, O., Krzascik, P., Trzaskowska, E., and Kostowski, W., 1989, Different effect of diltiazem and nifedipine on some central actions of ethanol in the rat., Alcohol, 6: 165PubMedCrossRefGoogle Scholar
  42. Quirion, R., Lal, S., Olivier, A., Robitaille, Y., Vassavan Nair, N.P., Ford, R.M. and Stratford, J.G., 1988, Calcium channel binding sites in human brain., Ann. N.Y. Acad. Sci., 522: 203Google Scholar
  43. Raeburn, D. and Gonzales, R.A., 1988, CNS disorders and calcium antagonists., Trends Pharmacol. Sci., 9: 117Google Scholar
  44. Ramkumar, V. and El-Fakahany, E.E., 1986, The current status of the dihydropyridine calcium channel antagonist binding sites in the brain., Trends Pharmacol. Sci., May: 171Google Scholar
  45. Reynolds, IJ., Wagner, J.A., Snyder, S.A., Thayer, S.A., Olivera, B.B. and Miller, R.J., 1986, Brain voltage-sensitive calcium channel subtypes: differentiation by omegaconotoxin fractions GVIA., Proc. Natl. Acad. Sci., 83: 8804Google Scholar
  46. Rius, R.A., Bergamaschi, S., DiFonso, F., Govoni, S., Trabucci, M. and Rossi, F., 1987, Acute ethanol effect on calcium antagonist binding in rat brain., Brain Res., 402: 359Google Scholar
  47. Siggins, G.R., Pittman, Q.J. and French, E.D., 1987, Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: an intracellular study., Brain Res., 414: 22Google Scholar
  48. Supervilai, P., and Karobath, M., 1984, The interaction of [3H]-PY 108–068 and of [3H]-PN 200–110 with calcium channel binding sites in the rat brain., J. Neural Transmission, 60: 149Google Scholar
  49. Takahashi, K., Wakamori, M., and Akaike, N., 1989, Hippocampal CA1 pyramidal cells of rats have four voltage-dependent calcium conductances., Neurosci. Lett., 104: 229Google Scholar
  50. Takahashi, K. and Akaike, N. 1990 Nicergoline inhibits T-type calcium channels in rat isolated hippocampal CA1 pyramidal neurones. Br. J. Pharmacol., 100: 705Google Scholar
  51. Whittington, M.A. and Little, H.J., 1990, Patterns of changes in field potentials in the isolated hippocampal slice on withdrawal from chronic ethanol treatment of mice in vivo., Brain Res Google Scholar
  52. Wu, P.H., Fan, T. and Naranjo, C.A., 1987, Nifedipine delays the acquisition of ethanol tolerance, Eur. J. Pharmacol., 139: 236Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. J. Little
    • 1
  • J. M. Littleton
    • 2
  1. 1.Pharmacology DepartmentThe Medical SchoolBristolUK
  2. 2.Division of Biomedical ScienceKing’s CollegeLondonUK

Personalised recommendations