Alcoholism pp 167-174 | Cite as

The Changing View of Ethanol’s Actions: From Generalities to Specifics

  • Boris Tabakoff
  • Paula L. Hoffman
Part of the NATO ASI Series book series (NSSA, volume 206)


The development of an addiction on ethanol involves a number of phenomena arising from the actions of ethanol on the central nervous system (CNS). These phenomena include ethanol-induced intoxication, reinforcement, the development of functional tolerance and physical dependence and ethanol-induced brain damage. One of the more popular hypotheses regarding the cellular and molecular mechanisms by which ethanol produces its effect on the CNS proposes that ethanol acts by disordering (fluidizing) the lipids of neuronal membranes (Meyer and Gottlieb, 1926; Chin and Goldstein, 1977). The disorder of the structural matrix of the neuronal membrane is thought to secondarily affect the activity of the functional proteins (receptors, ionophores, enzymes) residing in this (lipid) matrix. The “lipid hypothesis” of ethanol’s actions has recently been challenged, however, because relatively high concentrations of ethanol are necessary to produce lipid perturbations of the magnitude produced by even normal variations in body temperature (Tabakoff, Hoffman, and MacLaughlin, 1988). In addition, recent research has provided evidence of a selectivity of ethanol’s effects on various neuronal membrane proteins which cannot be explained simply by invoking an ethanol-induced perturbation of membrane lipid structure. Some of the most ethanol sensitive membrane proteins are the receptor-gated ion channels. The burgeoning knowledge of the physiologic roles of these channels and the responses of these proteins to the acute and chronic effects of ethanol suggests that particular systems may play a major role in the expression of the various physiologic and behavioral effects of ethanol. This overview will attempt to summarize the evidence that certain receptor-gated ion channels may be considered as specific “receptive systems” for ethanol in the CNS. We will also provide evidence on how certain neurohormones can modify the actions of ethanol within the CNS.


NMDA Receptor Arginine Vasopressin Fetal Alcohol Syndrome Ethanol Tolerance Ethanol Withdrawal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguayo, L. G., 1990, Ethanol potentiates the GABAA-activated C1- current in mouse hippocampal and cortical neurons, Eur. J. Pharmacol., 187: 127–130.PubMedCrossRefGoogle Scholar
  2. Allan, A. M. and Harris, R. A., 1986, Gamma-aminobutyric acid and alcohol actions: neurochemical studies of long sleep and short sleep mice, Life Sci., 39: 2005–2015.PubMedCrossRefGoogle Scholar
  3. Allan, A. M. and Harris, R. A., 1987, Acute and chronic ethanol treatments alter GABA receptor-operated chloride channels, Pharm. Biochem. Behay., 27: 665–670.CrossRefGoogle Scholar
  4. Brodie, M. S., Shefner, S. A. and Dunwiddie, T. V., 1990, Ethanol increases the firing rate of dopamine neurons of the rat ventral tegmental area in vitro, Brain Res., 508: 65–69.PubMedCrossRefGoogle Scholar
  5. Chin, J. H. and Goldstein, D. B., 1977, Drug tolerance in biomembranes: a spin label study of the effects of ethanol, Science, 196: 684–685.PubMedCrossRefGoogle Scholar
  6. Collingridge, G. L. and Lester, R. A. J., 1989, Excitatory amino acid receptors in the vertebrate central nervous system, Pharmacol. Rev., 41: 143–210.PubMedGoogle Scholar
  7. Curran, T., 1988, The fos oncogene, in: ‘The Oncogene Handbook’, E. P. Reddy, A. M. Skalka and T. Curran, eds., Elsevier Science Publishers B.V. ( Biomedical Division ).Google Scholar
  8. Dingledine, R., Hynes, M. A. and Kinge, G. L., 1986, Involvement of N-methyl-Daspartate receptors in epileptiform bursting in the rat hippocampal slice, J. Physiol., 380: 175–189.PubMedGoogle Scholar
  9. Garrett, K. M., Saito, N., Duman, R. S., Abel, M. S., Ashton, R. A., Fujimori, S., Beer, B., Tallman, J. F., Vitek, M. P. and Blume, A. J., 1990, Differential expression of y-aminobutyric acidA receptor subunits, Mol. Pharmacol., 37: 652–657.PubMedGoogle Scholar
  10. Gothert, M. and Fink, K., 1989, Inhibition of N-methyl-D-aspartate (NMDA)- and Lglutamate-induced noradrenaline and acetylcholine release in the rat brain by ethanol, Arch. Pharmacol., 340: 515–521.CrossRefGoogle Scholar
  11. Grant, K. A., Valverius, P., Hudspith, M. and Tabakoff, B., 1990, Ethanol withdrawal seizures and the NMDA receptor complex, Eur. J. Pharmacol., 176: 289–296.PubMedCrossRefGoogle Scholar
  12. Grant, K. A. and Barrett, J. E., Blockade of the discriminative stimulus effects of ethanol with 5-HT3 receptor antagonists, Psychopharmacol., in press 1991.Google Scholar
  13. Greenberg, M. E., Ziff, E. B. and Greene, L. A., 1986, Stimulation of neuronal acetylcholine receptors induces rapid gene transcription, Science, 234: 80–83.PubMedCrossRefGoogle Scholar
  14. Gulya, K., Grant, K. A., Valverius, P., Hoffman, P. L. and Tabakoff, B., Brain regional specificity and time course of changes in the NMDA receptor-ionophore complex during ethanol withdrawal, Brain Res., in press.Google Scholar
  15. Harris, E. W., Ganong, A. H. and Cotman, C. W., 1984, Long-term potentiation in the hippocampus involves activation of N-methyl-D-aspartate receptors, Brain Res., 323: 132–137.PubMedCrossRefGoogle Scholar
  16. Hoffman, P. L., Ritzmann, R. H., Walter, R. and Tabakoff, B., 1978, Arginine vasopressin maintains ethanol tolerance, Nature, 276: 614–616.PubMedCrossRefGoogle Scholar
  17. Hoffman, P. L. and Tabakoff, B., 1985, Ethanol’s action on brain biochemistry, in: ‘Alcohol and the Brain: Chronic Effects’, R. E. Tarter, D. H. van Thiel and K. L. Edwards, eds., Academic Press, New York.Google Scholar
  18. Hoffman, P. L., 1987, Central nervous system effects of neurohypophyseal peptides, in: ‘The Peptides’, C. W. Smith, ed.Google Scholar
  19. Hoffman, P. L., Tabakoff, B., Szabo, G., Suzdak, P. D. and Paul, S. M., 1987, Effect of an imidazobenzodiazepine, Ro15–4513, on the incoordination and hypothermia produced by ethanol and pentobarbital, Life Sci., 41: 611–619.PubMedCrossRefGoogle Scholar
  20. Hoffman, P. L. and Tabakoff, B., 1989, Mechanisms of alcohol tolerance, Aic. Alcoholism, 24: 251–252.Google Scholar
  21. Hoffman, P. L., Rabe, C. S., Moses, F. and Tabakoff, B., 1989, N-methyl-D-aspartate receptors and ethanol: inhibition of calcium flux and cyclic GMP production, J. Neurochem., 52: 1937–1940.PubMedCrossRefGoogle Scholar
  22. Ishizawa, T., Tabakoff, B., Mefford, I. N. and Hoffman, P. L., 1990, Reduction of arginine vasopressin binding sites in mouse lateral septum by treatment with 6hydroxydopamine, Brain Res., 507: 189–194.PubMedCrossRefGoogle Scholar
  23. Kleinschmidt, A., Bear, M. F. and Singer, W., 1987, Blockade of NMDA receptors disrupts experience-dependent plasticity of kitten striate cortex, Science, 238: 355–358.PubMedCrossRefGoogle Scholar
  24. Levitan, E. S., Schofield, P. R., Burt, D. R., Rhee, L. M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, H. F., Stephenson, A., Darlison, M. G., Barnard, E. A. and Seeburg, P. H., 1988, Structural and functional basis for GABA-A receptor heterogeneity, Nature, 335: 76–79.PubMedCrossRefGoogle Scholar
  25. Lovinger, D. M., White, G. and Weight, F. F., 1989, Ethanol inhibits NMDA-activated ion current in hippocampal neurons, Science, 243: 1721–1724.PubMedCrossRefGoogle Scholar
  26. Lovinger, D. M., Ethanol potentiates ion current mediated by 5-HT3 receptors on neuroblastoma cells and isolated neurons, Proc. 5th Congress Intl. Soc. Res. Alcoholism, in press.Google Scholar
  27. Luddens, H., Pritchett, D. B., Kohler, M., Killisch, I., Keinanen, K., Monyer, H., Sprengel, R. and Seeburg, P. H., 1990, Cerebellar GABAA receptor selective for a behavioral alcohol antagonist, Nature, 346: 648–651.PubMedCrossRefGoogle Scholar
  28. Meyer, H. H. and Gottlieb, R., 1926, Theory of narcosis, in: Experimental Pharmacology as a Basis for Therapeutics ( V.E. Henderson, trans.), Lippincott, Philadelphia, PA.Google Scholar
  29. Morrow, A. L., Suzdak,. P. D., Karanian, J. W. and Paul, S. M., 1988, Chronic ethanol administration alters y-aminobutyric acid, pentobarbital and ethanol-mediated 36C1- uptake in cerebral cortical synaptoneurosomes, J. Pharmacol. Exp. Ther., 246: 158–164.PubMedGoogle Scholar
  30. Naranjo, C. A., Sellers, E. M., Sullivan, J. T., Woodley, D. V., Kadlec, K. and Sykora, K., 1987, The serotonin uptake inhibitor citalopram attenuates ethanol intake, Clin. Pharmacol. Ther., 41: 266–274.PubMedCrossRefGoogle Scholar
  31. Rabe, C. S. and Tabakoff, B., Glycine site directed agonists reverse ethanol’s actions at the NMDA receptor, Mol. Pharmacol., in press.Google Scholar
  32. Rathna Giri, P., Dave, J. R., Tabakoff, B. and Hoffman, P. L., 1990, Arginine vasopressin induces the expression of c-fos in the mouse septum and hippocampus, Mol. Brain Res., 7: 131–137.CrossRefGoogle Scholar
  33. Shewey, L. M. and Dorsa, D. M., 1988, VI-type vasopressin receptors in rat brain septum: binding characteristics and effects on inositol phospholipid metabolism, J. Neurosci., 8: 1671–1677.PubMedGoogle Scholar
  34. Siggins, G. R., Pittman, Q. J. and French, C. D., 1987, Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: an intracellular study, Brain Res., 414: 22–34.PubMedCrossRefGoogle Scholar
  35. Suzdak, P. D., Glowa, J. R., Crawley, J. N., Schwartz, R. D., Skolnick, P. and Paul, S. M., 1986, A selective imidazobenzodiazepine antagonist of ethanol in the rat, Science, 234: 1243–1247.PubMedCrossRefGoogle Scholar
  36. Szabo, G., Tabakoff, B. and Hoffman, P. L., 1988, Receptors with V1 characteristics mediate the maintenance of ethanol tolerance by vasopressin, J. Pharmacol. Exp. Ther., 247: 536–541.PubMedGoogle Scholar
  37. Tabakoff, B., Hoffman, P. L. and McLaughlin, A., 1988, Is ethanol a discriminating substance?, Seminars Liver Dis., 8: 26–35.CrossRefGoogle Scholar
  38. Wafford, K. A., Burnett, D. M., Dunwiddie, T. V. and Harris, R. A., 1990, Genetic differences in the ethanol sensitivity of GABAA receptors expressed in Xenopus oocytes, Science, 249: 291–293.PubMedCrossRefGoogle Scholar
  39. Wise, R. A. and Bozarth, M. A., 1981, Brain substrates for reinforcement and drug self-administration, Prog. Neuropsychopharmacol., 5: 467–474.PubMedCrossRefGoogle Scholar
  40. Woodward, J. J. and Gonzales, R. A., 1990, Ethanol inhibition of N-methyl-D-aspartate-stimulated endogenous dopamine release from rat striatal slices: reversal by glycine, J. Neurochem., 54: 712–715.PubMedCrossRefGoogle Scholar
  41. Wozniak, K. M., Pert, A. and Linnoila, M., 1990, Antagonism of 5-HT3 receptors attenuates the effects of ethanol on extracellular dopamine, Eur. J. Pharmacol., 187: 287–289.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Boris Tabakoff
    • 1
    • 2
  • Paula L. Hoffman
    • 1
    • 2
  1. 1.Dept. of PharmacologyUniv. of Colorado Hlth. Sci. Ctr.DenverUSA
  2. 2.Section on Receptor Mechanisms Lab. of Physiologic and Pharmacologic StudiesNIAAABethesdaUSA

Personalised recommendations