Advertisement

Studies on the Ontogeny of the Immune Function in Birds

  • Nicole Le Douarin
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 292)

Abstract

Although formal genetics of birds is poorly developed if compared to that of certain mammalian species, the avian model presents certain advantages for immunological studies. The fact that birds possess a specialized organ for B cell differentiation, the bursa of Fabricius, was at the origin of the distinction of the two lymphocytes lineages which differ by their differentiation site and their role in the immune function.1–5 Moreover, the hematogenic hypothesis of the origin of the blood-forming organs was proposed as a result of investigations carried out in birds.6,7 By taking advantage of the possibility of operating on avian embryos during the critical period of organogene-sis, it was thereafter demonstrated that all the hematopoietic organs have to be seeded by stem cells of extrinsic origin during embryogenesis to differentiate and become functional.8–10 Thus, the decisive steps of thymic ontogenesis have been precisely defined in two closely related species of birds, the chick (Gallus gallus) and the Japanese quail (Coturnix coturnix japonica), both of which belong to the same family (the Phasi-anidae). The interest of working on these particular species resides in the cell marking system based on the unique structure of the interphase nucleus of all embryonic and adult cell types of the quail.11,12 Furthermore, development of the avian embryo allows foreign tissues to be grafted in the embryo in ovo, either between quail and chick or between chickens differing by the major histocompatibility complex (MHC), prior to the onset of immune system differentiation. One can, by this means, construct viable birds that are able to hatch and study the immunological status of the graft after birth when the host–s immune function has reached maturity.

Keywords

Major Histocompatibility Complex Major Histocompatibility Complex Class Skin Graft Mixed Lymphocyte Reaction Hemopoietic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Glick, T. S. Chang, and R. G. Japp, The bursa of Fabricius and antibody production, Poultry Sci. 35:224 (1956).CrossRefGoogle Scholar
  2. 2.
    N. L. Warner, A. Szenberg, and F. M. Burnet, The immunological role of different lymphoid organs in the chicken I. Dissociation of immunological responsiveness, Austr. J. Exper. Biol. Med. Sci. 40:373 (1962).CrossRefGoogle Scholar
  3. 3.
    M. D. Cooper, R. D. A. Peterson, and R. A. Good, Delineation of the thymic and bursal lymphoid systems in the chicken, Nature 205:143 (1965).PubMedCrossRefGoogle Scholar
  4. 4.
    M. D. Cooper, R. D. A. Peterson, M. A. South, and R. A. Good, The functions of the thymus system and the bursa system in the chicken, J. Exp. Med. 123:75 (1966).PubMedCrossRefGoogle Scholar
  5. 5.
    M. D. Cooper, M. M. Schwartz, and R. A. Good, Restoration of gammaglobulin production in agammaglobulinemic chickens, Science 151:71 (1966).CrossRefGoogle Scholar
  6. 6.
    M. A. S. Moore and J. J. T. Owen, Chromosome marker studies on the development of the haemopoietic system in the chick embryo, Nature 208:958 (1965).CrossRefGoogle Scholar
  7. 7.
    D. Metcalf and M. A. S. Moore, “Haemopoietic Cells”, North Holland Publishing Company, Amsterdam (1971).Google Scholar
  8. 8.
    N. M. Le Douarin and F. V. Jotereau, Origin and renewal of lymphocytes in avian embryo thymuses studied in interspecific combinations, Nature New Biol. 246:25 (1973).Google Scholar
  9. 9.
    N. M. Le Douarin and F. V. Jotereau, Tracing of cells of the avian thymus through embryonic life in interspecific chimaeras, J. Exp. Med. 142:17 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    N. M. Le Douarin, F. Dieterlen-Lievre, and P. D. Oliver, Ontogeny of primary lymphoid organs and lymphoid stem cells, Am. J. Anat. 170:261 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    N. M. Le Douarin, Particularites du noyau interphasique chez la Caille japonaise (Coturnix coturnix japonica). Utilisation de ses particularites comme “marquage biologique” dans des recherches sur les interactions tissulaires et les migrations cellulaires au cours de l’ontogenèse, Bull. Biol. Fr. Belg. 103:435 (1969).PubMedGoogle Scholar
  12. 12.
    N. M. Le Douarin, A biological cell labeling technique and its use in experimental embryology, Dev. Biol. 30:217 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    B. M. Péault, J. P. Thiery, and N. M. Le Douarin, Surface marker for the hemopoietic and endothelial cell lineages in the quail that is defined by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 80:2976 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    L. Pardanaud, C. Altmann, P. Kitos, F. Dieterlen-Lievre, and C. A. Buck, Vasculo-genesis in the early quail blastodisc as studied with a monoclonal antibody recognizing endothelial cells, Development 100:339 (1987).PubMedGoogle Scholar
  15. 15.
    N. M. Le Douarin, F. Guillemot, P. Oliver, and B. Peault, Distribution and origin of la-positive cells in the avian thymus analysed by means of monoclonal antibodies in heterospecific chimeras, in “Progress in Immunology V”, Y. Yamamura and T. Tada, eds., Acad. Press, New York (1983).Google Scholar
  16. 16.
    F. P. Guillemot, P. D. Oliver, B. M. Péault, and N. M. Le Douarin, Cells expressing la-antigens in the avian thymus, J. Exp. Med. 160:1803 (1984).PubMedCrossRefGoogle Scholar
  17. 17.
    C. L. H. Chen, L. Lanier Ager, L. Gartland, and M. D. Cooper, Identification of a T3/T cell receptor complex in chickens, J. Exp. Med. 16:375 (1986).CrossRefGoogle Scholar
  18. 18.
    C. L. Chen, J. Cihak, U. Losch, and M. D. Cooper, Differential expression of two T cell receptors, TcRl and TcR2, on chicken lymphocytes, Eur. J. Immunol. 18:539 (1988).PubMedCrossRefGoogle Scholar
  19. 19.
    C. H. Chen, J. T. Sowder, J. M. Lahti, J. Cihak, U. Lösch, and M. D. Cooper, TcR3: a third T cell receptor in the chicken, Proc. Nat. Acad. Sci. 86:2351 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    R. P. Bucy, C. L. Chen, J. Cihak, U. Lösch, and M. D. Cooper, Avian T cells expressing gamma delta receptors localize in splenic sinusoids and in intestinal epithelium, J. Immunol. 14:385 (1988).Google Scholar
  21. 21.
    M. M. Chan, C. L. H. Chen, L. Lanier Ager, and M. D. Cooper, Identification of the avian homologues of mammalian CD4 and CD8 antigens, J. Immunol. 140:2133 (1988).PubMedGoogle Scholar
  22. 22.
    J. Cihak, H: W. L. Ziegler-Heitbrock, H. Trainer, I. Schranner, M. Merkenschlager, and U. Losch, Characterization and functional properties of a novel monoclonal antibody which identifies a T cell receptor in chicken, Eur. J. Immunol. 18:533 (1988).PubMedCrossRefGoogle Scholar
  23. 23.
    J. T. Sowder, C.-L. H. Chen, L. L. Ager, M. M. Chan, and M. D. Cooper, A large subpopulation of avian T cells express a homologue of the mammalian T gamma delta receptor, J. Exp. Med. 167:315 (1988).PubMedCrossRefGoogle Scholar
  24. 24.
    D. Char, C. H. Chen, P. Bucy, and M. D. Cooper, Identification of a third T cell receptor (TCR3) in the chicken with a monoclonal antibody, Fed. Proc. (Abstr.) 3:485 (1989).Google Scholar
  25. 25.
    F. V. Jotereau and N. M. Le Douarin, Demonstration of a cyclic renewal of the lymphocyte precursor cells in the quail thymus during embryonic and perinatal life, J. Immunol. 129:1869 (1982).PubMedGoogle Scholar
  26. 26.
    M. Coltey, F. V. Jotereau, and N. M. Le Douarin, Evidence for a cyclic renewal of lymphocyte precursor cells in the embryonic chick thymus, Cell Diff. 22:71 (1987).CrossRefGoogle Scholar
  27. 27.
    J. Salaün, A. Bandeira, I. Khazaal, F. Caiman, M. Coltey, A. Coutinho, and N. M. Le Douarin, Thymic epithelium tolerizes for histocompatibility antigens, Science 247:1471 (1990).PubMedCrossRefGoogle Scholar
  28. 28.
    J. Salaün, F. Caiman, M. Coltey, and N. M. Le Douarin, Construction of chimeric thymuses in the mouse fetus by in utero surgery, Eur. J. Immunol. 16:523 (1986).PubMedCrossRefGoogle Scholar
  29. 29.
    F. Jotereau, F. Heuze, V. Salomon-Vie, and H. Gascan, Cell kinetics in the foetal mouse thymus: precursor cell input, proliferation and emigration, J. Immunol. 138:1026 (1987).PubMedGoogle Scholar
  30. 30.
    I. Khazaal, J. Salaün, M. Coltey, F. Caiman, and N. M. Le Douarin, Restoration of T-cell function in nude mice by grafting the epitheliomesenchymal thymic rudiment, Cell Diff. 26:211 (1989).CrossRefGoogle Scholar
  31. 31.
    A. R. Ready, E. J. Jenkinson, R. Kingston, and J. J. T. Owen, Successful transplantation across major histocompatibility barrier of deoxyguanosine-treated embryonic thymus expressing class II antigens, Nature 310:231 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    H. von Boehmer and K. Schubiger, Thymocytes appear to ignore class I major histo-compatibility complex antigens expressed on thymus epithelial cells, Eur. J. Immunol. 14:1048 (1988).CrossRefGoogle Scholar
  33. 33.
    H. Ohki, C. Martin, C. Corbel, M. Coltey, and N. M. Le Douarin, Tolerance induced by thymic epithelial grafts in birds, Science 237:1032 (1987). •34. H. Ohki, C. Martin, M. Coltey, and N. M. Le Douarin, Implants of quail thymic epithelium generate permanent tolerance in embryonically constructed quail/chick chimeras, Development 104:619 (1988).PubMedGoogle Scholar
  34. 35.
    M. Belo, C. Corbel, C. Martin, and N. M. Le Douarin, Thymic epithelium tolerizes chickens to embryonic grafts of quail bursa of Fabricius, Internation. Immunol. 1:105 (1989).CrossRefGoogle Scholar
  35. 36.
    N. M. Le Douarin, Ontogeny of hematopoietic organs studied in avian embryo interspecific chimeras, in “Differentiation of Normal and Neoplastic Hemato-poietic Cells”, B. Clarkson, P. A. Marks, and J. E. Till, eds., Cold Spring Harbor Laboratory, U. S. A. (1978).Google Scholar
  36. 37.
    F. V. Jotereau, E. Houssaint, and N. M. Le Douarin, Lymphoid stem cell homing to the early thymic primordium of the avian embryo, Europ. J. Immunol. 10:620 (1980).CrossRefGoogle Scholar
  37. 38.
    S. Ben Slimane, F. Houllier, G. G. Tucker, and J. P. Thiery, In vitro migration of avian hemopoietic cells to the thymus: preliminary characterization of a chemotactic mechanism, Cell Diff 13:1 (1983).CrossRefGoogle Scholar
  38. 39.
    S. Champion, B. Imhof, P. Savagner, and J. P. Thiery, The embryonic thymus produces chemotactic peptides involved in the homing of hemopoietic precursors, Cell 44: 781 (1986).PubMedCrossRefGoogle Scholar
  39. 40.
    P. Savagner, B. A. Imhof, K. M. Yamada, and J. P. Thiery, Homing of hemopoietic precursor cells to the embryonic thymus: characterization of an invasive mechanism induced by chemotactic peptides, J. Cell Biol. 103:2715 (1986).PubMedCrossRefGoogle Scholar
  40. 41.
    B. A. Imhof, M. A. Deugnier, J. M. Girault, S. Champion, C. Damais, T. Itoh, and J. P. Thiery, Thymotoxin: A thymic epithelial peptide chemotactic for T-cell precursors, Proc. Natl. Acad. Sci. USA 85:7699 (1988).PubMedCrossRefGoogle Scholar
  41. 42.
    C. Dargemont, D. Dunan, M. A. Deugnier, M. Denoyelle, J. M. Girault, F. Lederer, Kim Ho Diep Le, F. Godeau, J. P. Thiery, and B. A. Imhof, Thymotoxin, a chemotactic protein, is identical to B2 microglobulin, Science 246:803 (1989).PubMedCrossRefGoogle Scholar
  42. 43.
    M. Kinutani and N. M. Le Douarin, Avian spinal cord chimeras: I. Hatching ability and post hatching survival in homo-and heterospecific chimaeras, Dev. Biol. 111:243 (1985).PubMedCrossRefGoogle Scholar
  43. 44.
    M. Kinutani, M. Coltey, and N. M. Le Douarin, Postnatal development of a demyelinating disease in avian spinal cord chimeras, Cell 45:307 (1986).PubMedCrossRefGoogle Scholar
  44. 45.
    M. Kinutani, K. Tan, J. Desaki, M. Coltey, K. Kitaoka, Y. Nagano, Y. Takashima, and N. M. Le Douarin, Avian spinal cord chimeras. Further studies on the neuro-logical syndrome affecting the chimeras after birth, Cell Diff. 26:145 (1989).CrossRefGoogle Scholar
  45. 46.
    R. E. Billingham, L. Brent, and P. B. Medawar, Actively acquired tolerance to foreign cells, Nature 172:603 (1953).PubMedCrossRefGoogle Scholar
  46. 47.
    C. Corbel, C. Martin, H. Ohki, M. Coltey, L. Hlozaneck, and N. M. Le Douarin, Evidence for peripheral mechanisms inducing tissue tolerance during ontogeny, Int. Immunol. 2:33 (1990).PubMedCrossRefGoogle Scholar
  47. 48.
    F. V. Jotereau and N. M. Le Douarin, The development relationship between osteocytes and osteoclasts: a study using the quail-chick nuclear marker in endochondral ossification, Dev. Biol 63:253 (1978).PubMedCrossRefGoogle Scholar
  48. 49.
    L. Pardanaud, F. Yassine, and F. Dieterlen-Lievre, Relationship between vasculogenesis and hemopoiesis during avian ontogeny, Development 105:473 (1989).PubMedGoogle Scholar
  49. 50.
    M. F. Flajnick, L. Du Pasquier, and M. Cohen, Immune responses of thymus/lymphocyte embryonic chimeras: studies on tolerance and major histocompatibility complex restriction in Xenopus, Europ. J. Immunol. 15:540 (1985).CrossRefGoogle Scholar
  50. 51.
    B. A. Kyewski, C. G. Fathman, and H. S. Kaplan, Intrathymic presentation of circulating non-major histocompatibility complex antigens, Nature 308:196 (1983).CrossRefGoogle Scholar
  51. 52.
    H. R. Mac Donald, T. Pedrazzini, R. Schneider, J. A. Louis, R. M. Zinkernagel, and H. Hengartner, Intrathymic elimination of Mlsa-reactive (Vb6+) cells during neonatal tolerance induction to Mlsa-encoded antigens, J. Exp. Med. 167:2005 (1988).CrossRefGoogle Scholar
  52. 53.
    H. R. Mac Donald, R. Schneider, R. K. Lees, R. C. Howe, H. Acha-Orbea, H. Festenstein, R. M. Zinkernagel, and H. Hengartner, T-cell receptor V; use predicts reactivity and tolerance to Mlsa-encoded antigens, Nature 332:40 (1988).CrossRefGoogle Scholar
  53. 54.
    R. N. Smith and J. C. Howard, Heterogeneity of the tolerant state in rats with long established skin grafts, J. Immunol. 125:2289 (1980).PubMedGoogle Scholar
  54. 55.
    K. M. Mohler and J. W. Streilein, Tolerance to class II major histocompatibility complex molecules is maintained in the presence of endogenous, interleukin 2-producing, tolerogen-specific T lymphocytes, J. Immunol. 139:2211 (1987).PubMedGoogle Scholar
  55. 56.
    R. Zamoyska, H. Waldman, and P. Matzinger, Peripheral tolerance mechanisms prevent the development of autoreactive T cells in chimeras grafted with two minor incompatible thymuses, Europ. J. Immunol. 19:111 (1989).CrossRefGoogle Scholar
  56. 57.
    A. Coutinho and A. Bandeira, Tolerize one, tolerize them all: tolerance is self-assertion, Immunol. Today 10:264 (1989).PubMedCrossRefGoogle Scholar
  57. 58.
    A. Bandeira, A. Coutinho, C. Carnaud, F. Jacquemart, and L. Forni, Transplantation tolerance correlates with high levels of T-and B-lymphocyte activity, Proc. Natl. Acad. Sci. 86:272 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Nicole Le Douarin
    • 1
  1. 1.Institut d’Embryologie Cellulaire et MoléculaireCNRS et du Collège de FranceNogent-sur-Marne CédexFrance

Personalised recommendations