Advertisement

Restricted Utilization of Germ-Line VH Genes in Rabbits: Implications for Inheritance of VH Allotypes and Generation of Antibody Diversity

  • Katherine L. Knight
  • Robert S. Becker
  • Luisa A. Dipietro
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 292)

Summary

The presence of inherited VH region allotypic specificities, al, a2 or a3, on nearly all rabbit immunoglobulins has presented a paradox. We know the germline contains hundreds of VH genes, and if we assume that most of these are used in the generation of antibody diversity, then we must ask how have the a allotype-encoding regions been maintained over time? On the other hand, if we assume that only one (or a small number) of these VH gene(s) is (are) used in VDJ gene rearrangements, then, how is antibody diversity generated? To address these questions, we have cloned and determined the nucleotide sequence of the 3′-most germ-line VH genes from the al, a2 and a3 chromosomes and shown in each case that the 3′-most H gene, VHl-al, VHl-a2, or VHl-a3, encodes an al, a2 or a3 VH region, respectively. Analysis of rearranged VD1 genes from leukemic B cells showed that VH1 was utilized in these rearrangements. Based on these data, we propose that the allelic inheritance of the VH allotypes is explained by the preferential usage of the VH1 gene in VDJ rearrangements. Support for this hypothesis was obtained from analysis of the mutant rabbit Alicia in which most serum Ig molecules do not have VHa allotypic specificities, but instead have so-called VHa-negative Ig molecules. In this rabbit, VH1 is not expressed as it has been deleted. Analysis of cDNA clones from spleen of Alicia rabbits suggests that the expressed VHa-negative molecules also are encoded by a single germline VH gene. Thus, we suggest that nearly all rabbit VH regions are encoded by one to two germline VH genes and that antibody diversity is generated primarily by somatic hypermutation and gene conversion.

Keywords

Cosmid Clone Cosmid Library Antibody Diversity Transgenic Rabbit Heavy Chain Variable Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Dray, G. O. Young, and L. Gerald, Immunochemical identification and genetics of rabbit globulin allotypes, J. Immunol. 91:403 (1963).PubMedGoogle Scholar
  2. 2.
    S. Dray, G. O. Young, and A. Nisonoff, Distribution of allotypic specificities among rabbit globulin molecules genetically defined at two loci, Nature (Lond.) 199:52 (1963).CrossRefGoogle Scholar
  3. 3.
    R. G. Mage, K. E. Bernstein, N. Mc-Cartney-Francis, C. B. Alexander, G. O. Young-Cooper, E. A. Padlan, and G. H. Cohen, The structural and genetic basis for expression of normal and latent VRa allotypes of the rabbit, Molec. Immunol. 21:1067 (1984).CrossRefGoogle Scholar
  4. 4.
    T. J. Kindt, Rabbit immunoglobulin allotypes, Adv. Immunol. 21:35 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    B. S. Kim and S. Dray, Identification and genetic control of allotypic specificities on two variable region subgroups of rabbit immunoglobulin heavy chains, Eur. J. Immunol. 2:509 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    K. H. Roux, A fourth heavy chain variable region subgroup, w, with 2 variants defined by an induced auto-antiserum in the rabbit, J. Immunol. 127:626 (1981).PubMedGoogle Scholar
  7. 7.
    E. A. Kabat, T. T. Wu, M. Reid-Miller, H. M. Perry, and K. S. Gottesman, “Sequences of Proteins of Immunologic Interest,” U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, 4th Edition (1987).Google Scholar
  8. 8.
    S. J. Currier, J. L. Gallarda, and K. L. Knight, Partial molecular genetic map of the rabbit VH chromosomal region, J. Immunol. 140:1651 (1988).PubMedGoogle Scholar
  9. 9.
    J. L. Gallarda, K. S. Gleason, and K. L. Knight, Organization of rabbit immunoglobu lin genes I. Structure and multiplicity of germ-line VH genes, J. Immunol. 135:4222 (1985).PubMedGoogle Scholar
  10. 10.
    R. S. Becker, S. Zhai, S. J. Currier, and K. L. Knight, Ig VH, DH, and JH germ-line gene segments linked by overlapping cosmid clones of rabbit DNA, J. Immunol. 142:1351 (1989).PubMedGoogle Scholar
  11. 11.
    K. L. Knight, H. Spieker-Polet, D. S. Kazdin, and V. T. Oi, Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer, Proc. Natl. Acad. Sci. USA 85:3130 (1988).PubMedCrossRefGoogle Scholar
  12. 12.
    R. S. Becker, M. Suter, and K. L. Knight, Restricted utilization of VH and DH genes in leukemic rabbit B cells, Eur. J. Immunol. 20:397 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    L. A. Di-Pietro and K. L. Knight, Restricted utilization of germ-line VH genes and diversity of D regions in rabbit splenic Ig mRNA, J. Immunol. 144:1969 (1990).Google Scholar
  14. 14.
    G. D. Yancopoulos, S. V. Desiderio, M. Paskind, J. F. Kearney, D. Baltimore, and F. Alt, Preferential utilization of the most JR-proximal VH gene segments in pre-B cell lines, Nature 311:727 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    H. W. Schroeder, Jr., J. L. Hillson, and R. M. Perlmutter, Early restriction of the human antibody repertoire, Science 283:791 (1987).CrossRefGoogle Scholar
  16. 16.
    K. L. Knight and R. S. Becker, Molecular basis of the allelic inheritance of rabbit immunoglobulin VH allotypes: Implications for the generation of antibody diversity, Cell 60:963 (1990).PubMedCrossRefGoogle Scholar
  17. 17.
    A. S. Kelus and S. Weiss, Mutation affecting the expression of immunoglobulin variable regions in the rabbit, Proc. Natl. Acad. Sci. USA 83:4883 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    L. A. Di-Pietro, J. A. Short, S. Zhai, A. S. Kelus, J. Meier, and K. L. Knight, Limited number of immunoglobulin VH regions expressed in the mutant rabbit “Alicia”, Eur. J. Immunol ,(in press, 1990).Google Scholar
  19. 19.
    H. W. Schroeder, Jr., M. A. Walter, M. H. Hofker, A. Ebens, K. Willems Van Dijk, L. C. Liao, D. W. Cox, E. C. B. Milner, and R. M. Perlmutter, Physical linkage of a human immunoglobulin heavy chain variable region gene segment to diversity and joining region elements, Proc. Natl. Acad. Sci. USA 85:8196 (1988).PubMedCrossRefGoogle Scholar
  20. 20.
    C.-A. Reynaud, A. Dahan, V. Anquez, and J.-C. Weill, Somatic hyperconversion diversifies the single VR gene of the chicken with a high incidence in the D region, Cell 59:171 (1989).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Katherine L. Knight
    • 1
  • Robert S. Becker
    • 1
  • Luisa A. Dipietro
    • 2
  1. 1.Department of Microbiology, Stritch School of MedicineLoyola University ChicagoMaywoodUSA
  2. 2.Department of PathologyNorthwestern UniversityChicagoUSA

Personalised recommendations