Advertisement

Evolutionary Development of Immunoglobulin Gene Diversity

  • G. W. Litman
  • C. T. Amemiya
  • F. A. Harding
  • R. N. Haire
  • K. R. Hinds
  • R. T. Litman
  • Y. Ohta
  • M. J. Shamblott
  • J. A. Varner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 292)

Abstract

In all jawed vertebrate species, antibody diversity is specified by an immunoglobulin monomeric structure consisting of two heavy chains and two light chains. Different immuno-globulin classes are associated with various polymeric configurations of the basic monomer. Immunoglobulin-like heterodimers also occur in the jawless vetebrates (cyclostomes) of which the only extant representatives are the lampreys and hagfishes (Varner and Litman, unpub-lished observations);1-2 primary structure data that would firmly establish these as antibodies, however, are not available presently. During the past several years, our labora-tory has identified immunoglobulin genes in species that are considered to represent signifi-cant departure points in vertebrate phylogeny.3 Taken together with the descriptions of im-munoglobulin genes in avians4,5 and mammals,6 a reasonably complete picture of the over-all evolution of immunoglobulin gene structure and diversity is emerging. In all of these species, the most distinctive features of the immunoglobulin gene system, segmental organiza-tion and selective rearrangement in somatic tissues, are preserved. The structures of indivi-dual heavy chain variable (VH), diversity (DR), joining (JH) and certain constant region (CR) segmental elements are also remarkably similar. Two additional features of higher, vertebrate immunoglobulin genomic organization, the split leader and recombination signal sequences (RSSs), also are found in lower vertebrates. Furthermore, the exon-intron organization of the constant region found in Heterodontus (horned shark), the most phylogenetically primitive vertebrate studied thus far, is equivalent to that described in mammals.7 To a certain degree, some of these findings are not unexpected since in many cases the genes in lower vetebrates were detected by cross-hybridization with a particular mammalian immunoglobulin heavy chain gene probe.8,9

Keywords

Constant Region Immunoglobulin Gene Complementarity Determine Region Cartilaginous Fish Light Chain Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Raison, C. J. Hull, and Hildemann, W. H., Characterization of immunoglobulin from the Pacific hagfish, a primitive vertebrate, Proc. Natl. Acad. Sci. U. S. A. 75:5679 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    K. Kobayashi, S. Tomonaga, and K. Hagiwara, Isolation and characterization of immunoglobulin of hagfish, Eptatretus burgeri ,a primitive vertebrate, Mol. Immunol. 22:1091 (1985).PubMedCrossRefGoogle Scholar
  3. 3.
    G. W. Litman, M. J. Shamblott, R. Haire, C. Amemiya, H. Nishikata, K. Hinds, F. Harding, R. Litman, and J. Varner, Evolution of immunoglobulin gene complexity, in in Immunology VII, F. Melchers, ed., Springer-Verlag, Berlin (1989).Google Scholar
  4. 4.
    C.-A. Reynaud, V. Anquez, H. Grimal, and J.-C. Weill, A hyperconversion mechanism generates the chicken light chain preimmune repertoire, Cell 48:379 (1987).PubMedCrossRefGoogle Scholar
  5. 5.
    C.-A. Reynaud, A. Anquez, and J.-C. Weill, Somatic hyperconversion diversifies the single VR gene of the chicken with a high incidence in the D region, Cell 59:171 (1989).PubMedCrossRefGoogle Scholar
  6. 6.
    T. K. Blackwell and F. W. Alt, Immunoglobulin genes, in “Molecular Immunology”, B. A. Hames and D. M. Glover, eds., IRL Press Ltd., Oxford (1988).Google Scholar
  7. 7.
    F. Kokubu, K. Hinds, R. Litman, M. J. Shamblott, and G. W. Litman, Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate, EMBO J. 7:1979 (1988).PubMedGoogle Scholar
  8. 8.
    G. W. Litman, L. Berger, K. Murphy, R. T. Litman, K. R. Hinds, C. L. Jahn, and B. W. Erickson, Complete nucleotide sequence of an immunoglobulin VH gene homologue from Caiman ,a phylogenetically ancient reptile, Nature 303:349 (1983).PubMedCrossRefGoogle Scholar
  9. 9.
    G. W. Litman, L. Berger, K. Murphy, R. Litman, K. R. Hinds, and B. W. Erickson, Immunoglobulin VH gene structure and diversity in Heterodontus ,a phylogenetically primitive shark, Proc. Natl. Acad. Sci. U. S. A. 82:2082 (1985).PubMedCrossRefGoogle Scholar
  10. 10.
    K. R. Hinds and G. W. Litman, Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution, Nature 320:546 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    F. Kokubu, R. Litman, M. J. Shamblott, K. Hinds, and G. W. Litman, Diverse organization of immunoglobulin V gene loci in a primitive vertebrate, EMBO J., 7:3413 (1988).PubMedGoogle Scholar
  12. 12.
    C. T. Amemiya and G. W. Litman, The complete nucleotide sequence of an immunoglobulin heavy chain gene and analysis of immunoglobulin gene organization in a primitive teleost species, Proc. Natl. Acad. Sci. U. S. A. 87:811 (1990).PubMedCrossRefGoogle Scholar
  13. 13.
    F. A. Harding, N. Cohen, and G. W. Litman, Immunoglobulin heavy chain gene organization and complexity in the skate, Raja erinacea, Nuc. Acids Res. 18:1015 (1990).CrossRefGoogle Scholar
  14. 14.
    M. J. Shamblott and G. W. Litman, Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization, EMBO J. 8:3733 (1989).PubMedGoogle Scholar
  15. 15.
    R. N. Haire, C. T. Amemiya, D. Suzuki, and G. W. Litman, Eleven distinct VH gene families and additional patterns of sequence variation suggest a high degree of immunoglobulin VH gene complexity in a lower vertebrate: Xenopus laevis, J. Exp. Med. 171:1721 (1990).PubMedCrossRefGoogle Scholar
  16. 16.
    J. Schwager, C. A. Mikoryak, and L. A. Steiner, Amino acid sequence of heavy chain from Xenopus laevis IgM deduced from cDNA sequence: Implications for evolution of immunoglobulin domains, Proc. Natl. Acad. Sci. U. S. A. 85:2245 (1988).PubMedCrossRefGoogle Scholar
  17. 17.
    R. N. Haire, M. J. Shamblott, C. T. Amemiya, and G. W. Litman, A second Xenopus immunoglobulin heavy chain constant region isotype gene, Nucleic Acids Res. ,17:1776 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    C. T. Amemiya, R. N. Haire, and G. W. Litman, Nucleotide sequence of a cDNA encoding a third distinct Xenopus immunoglobulin heavy chain isotype, Nuc. Acids Res. 17:5388 (1989).CrossRefGoogle Scholar
  19. 19.
    E. Hsu, J. Schwager, and F. W. Alt, Evolution of immunoglobulin genes: Families in the amphibian Xenopus, Proc. Natl. Acad. Sci. USA 86:8010 (1989).PubMedCrossRefGoogle Scholar
  20. 20.
    V. L. Scofield, J. M. Schlumpberger, L. A. West, and I. L. Weissman, Protochordate allorecognition is controlled by a MHC-like gene system, Nature 294:499 (1982).CrossRefGoogle Scholar
  21. 21.
    W. H. Hildemann, I. S. Johnson, and P. L. Jokiel, Immunocompetence in the lowest metazoan phylum: Transplantation immunity in sponges, Science 204:420 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    C.L. Chen, L. L. Ager, G. L. Gartland, and M. D. Cooper, Identification of a T3/T cell receptor complex in chickens, J. Exp. Med. 164:375 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • G. W. Litman
    • 1
  • C. T. Amemiya
    • 1
  • F. A. Harding
    • 1
  • R. N. Haire
    • 1
  • K. R. Hinds
    • 1
  • R. T. Litman
    • 1
  • Y. Ohta
    • 1
  • M. J. Shamblott
    • 1
  • J. A. Varner
    • 1
  1. 1.Tampa Bay Research InstituteSt. PetersburgUSA

Personalised recommendations