Classical and Quantum, Lattice and Continuum Percolation

  • J. L. Skinner
  • J. G. Saven
  • J. R. Wright
  • L. J. Root
Part of the NATO ASI Series book series (NSSB, volume 258)


The concepts of percolation theory have been useful in describing the transport of matter or energy in condensed matter.1 Both lattice and continuum models have received considerable attention. For lattice problems, Monte Carlo simulation has been quite effective in determining critical thresholds and exponents. Alternatively, real-space renormalization group methods have also been successful.2 We have devised a renormalization group method, which is based on the finite-size scaling hypothesis,3 and which can be generalized easily to study quantum percolation (to be described below).


Percolation Threshold Percolation Theory Renormalization Group Method Site Percolation Random Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Stauffer. Introduction to Percolation Theory. Taylor and Francis London, (1985).CrossRefGoogle Scholar
  2. 2.
    P.J. Reynolds, H.E. Stanley, and W. Klein. J. Phys. A 11, L199 (1978).CrossRefGoogle Scholar
  3. 3.
    M. N. Barber, in: Phase Transitions and Critical Phenomena, vol. 8, ed. C. Domb and J. Lebowitz. Academic, London, (1983).Google Scholar
  4. 4.
    L.J. Root, J.D. Bauer, and J.L. Skinner. Phys. Rev. B 37, 5518 (1988).CrossRefGoogle Scholar
  5. 5.
    M. P. Nightingale. Physica 83 A, 561 (1976).Google Scholar
  6. 6.
    D.W. Herrmann and D. Stauffer. Z. Phys. B 44, 339 (1981).CrossRefGoogle Scholar
  7. 7.
    L.J. Root and J.L. Skinner. J. Chem. Phys. 89, 3279 (1988).CrossRefGoogle Scholar
  8. 8.
    C.M. Soukoulis, E.N. Economou, and G.S. Grest. Phys. Rev. B 36, 8649 (1987).CrossRefGoogle Scholar
  9. 9.
    J.G. Saven, J.R. Wright, J.L. Skinner, and B J. Berne, (unpublished).Google Scholar
  10. 10.
    S.W. Haan and R. Zwanzig. J. Phys. A 10, 1547 (1977).CrossRefGoogle Scholar
  11. 11.
    Y.C. Chiew and G. Stell. J. Chem. Phys. 90, 4956 (1989).CrossRefGoogle Scholar
  12. 12.
    A.L.R. Bug, S.A. Safran, G.S. Grest, and I. Webman. Phys. Rev. Lett. 55, 1896 (1985).CrossRefGoogle Scholar
  13. 13.
    J.D. Bauer, V. Logovinsky, and J.L. Skinner. J. Phys. C 21, L993 (1988)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. L. Skinner
    • 1
  • J. G. Saven
    • 1
  • J. R. Wright
    • 1
  • L. J. Root
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations