Stochastic Models of Population and Phase Relaxation

  • J. L. Skinner
  • H. M. Sevian
  • M. Aihara
  • B. B. Laird
Part of the NATO ASI Series book series (NSSB, volume 258)


The time constants T 1 and T 2 were introduced many years ago to describe relaxation in nuclear magnetic resonance.1,2 To be explicit, let us consider a collection of spin 1/2 particles in a static magnetic field in the z: direction. Each of the spins can of course be found in either of two quantum states, up or down. In thermal equilibrium, this produces a nonzero z-component of the magnetization. If the system is prepared in a nonequilibrium state, the longitudinal (z) and transverse (x or y) magnetizations relax in time to the appropriate equilibrium values. In the simple phenomenological model of Bloch, these longitudinal and transverse components decay exponentially with time constants T 1 and T 2 respectively. Focusing instead on the 2 × 2 density matrix for the two spin states, T 1 and T 2 also describe the exponential decay to equilibrium of the diagonal and off-diagonal elements respectively. For that reason T 1 and T 2 are called the population and phase relaxation times, respectively.


Density Matrix Bloch Equation Equilibrium Population Density Matrix Element Complete Positivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Abragam. The Principles of Nuclear Magnetism. Oxford, London (1961).Google Scholar
  2. 2.
    C.P. Slichter. Principles of Magnetic Resonance, 2nd ed. Springer-Verlag, Berlin (1978).Google Scholar
  3. 3.
    D. Oxtoby. Adv. Chem. Phys. 40, 1 (1979).CrossRefGoogle Scholar
  4. 4.
    D. Oxtoby. Adv. Chem. Phys. 47 (part 2), 487 (1981).CrossRefGoogle Scholar
  5. 5.
    L. Allen and J.H. Eberly. Optical Resonance and Two-Level Atoms. Wiley, New York (1975).Google Scholar
  6. 6.
    M. D. Fayer. In: Spectroscopy and Excitation Dynamics of Condensed Molecular Systems. Ed. V.M. Agranovich and R.M. Hochstrasser. North-Holand, Amsterdam (1983).Google Scholar
  7. 7.
    J.L. Skinner and D. Hsu. Adv. Chem. Phys. 65, 1 (1986).CrossRefGoogle Scholar
  8. 8.
    J.L. Skinner and D. Hsu. J. Phys. Chem. 90, 4931 (1986).CrossRefGoogle Scholar
  9. 9.
    J. L. Skinner. Ann. Rev. Phys. Chem. 39, 463 (1988).CrossRefGoogle Scholar
  10. 10.
    A. G. Redfield. Adv. Mag. Reson. 1, 1 (1965).Google Scholar
  11. 11.
    B.B. Laird and J.L. Skinner, (unpublished).Google Scholar
  12. 12.
    J. Budimir and J.L. Skinner. J. Stat. Phys. 49, 1029 (1987).CrossRefGoogle Scholar
  13. 13.
    H.M. Sevian and J.L. Skinner. J. Chem. Phys. 91, 1775 (1989).CrossRefGoogle Scholar
  14. 14.
    M. Aihara, H. M. Sevian, and J.L. Skinner. Phys. Rev. A (in press).Google Scholar
  15. 15.
    V. Gorini, A. Kossakowski, and E.C.G. Sudarshan. J. Math. Phys. 17, 821 (1976).CrossRefGoogle Scholar
  16. 16.
    G. Lindblad. Commun. Math. Phys. 48, 119 (1976).CrossRefGoogle Scholar
  17. 17.
    H. Spohn and J.L. Lebowitz. Adv. Chem. Phys. 38, 109 (1978).CrossRefGoogle Scholar
  18. 18.
    R. Alicki and K. Lendi. Quantum Dynamical Semigroups and Applications. Springer-Verlag, Berlin (1987).Google Scholar
  19. 19.
    R. F. Fox, Phys. Rep. 48, 179 (1978)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. L. Skinner
    • 1
  • H. M. Sevian
    • 1
  • M. Aihara
    • 1
  • B. B. Laird
    • 1
  1. 1.Department of ChemistryColumbia UniversityNew YorkUSA

Personalised recommendations