Reactions in Microemulsions: Fractal Modeling

  • P. Lianos
  • P. Argyrakis
Part of the NATO ASI Series book series (NSSB, volume 258)


We use a fractal picture to understand the kinetics of the A+B reaction in microemulsion droplets, micelles, lipid vesicles, and similar systems. We examine the case where [A]<[B], using equations previously utilized for the intepretation of luminescence quenching in such systems. We find that a percolation model of clusters below the critical threshold with a specified range in cluster size provides a good example of an inhomogeneous space, such is the case for these systems. The [A]/[B] density ratio was either constant or varying as a function of p (p=the probability for an open site). Our conclusions show that the resulting spectral dimension of the reaction process is always smaller numerically than the customary value ds=4/3, and that it is strongly dependent on the size and shape of the reaction space.


Cluster Size Percolation Threshold Monte Carlo Step Percolation Cluster Decay Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    P. Lianos and P. Argyrakis, Phys. Rev. A, 39, 4170 (1989).CrossRefGoogle Scholar
  2. (2).
    P. Lianos and S. Modes, J. Phys. Chem., 91, 6088(1987).Google Scholar
  3. (3).
    P. Lianos, J. Chem. Phys., 89,5237(1988).CrossRefGoogle Scholar
  4. (4).
    G. Duportail and P. Lianos, Chem. Phys. Lett., 165, 35(1990).CrossRefGoogle Scholar
  5. (5).
    S. Modes, P. Lianos, and A. Xenakis, J. Phys. Chem., in press.Google Scholar
  6. (6).
    J. Klafter and A. Blumen, J. Chem. Phys., 80,875(1984).CrossRefGoogle Scholar
  7. (7).
    R. Kopelman, J. Stat. Phys. 42,185(1986)CrossRefGoogle Scholar
  8. (8).
    D. Toussaint and F. Wilczek, J. Chem. Phys., 78, 2642(1983);CrossRefGoogle Scholar
  9. (9).
    J. Lang, A. Jada and A. Malliaris, J. Phys. Chem., 92,1946 (1988); See also references there in.CrossRefGoogle Scholar
  10. (10).
    P. Argyrakis and R. Kopelman, J. Phys. Chem., 91,2699(1987); J. Phys. Chem., 93,225(1989).CrossRefGoogle Scholar
  11. (11).
    P. Lianos, M.L. Viriot, and R. Zana, J. Phys. Chem., 88,1098(1984).CrossRefGoogle Scholar
  12. (12).
    J. Hoshen, R. Kopelman, and E. M. Monberg, J. Stat. Phys., 19,219(1978).CrossRefGoogle Scholar
  13. (13).
    S. Alexander and R. Orbach, J. Phys. Lett., 43, L625(1982).CrossRefGoogle Scholar
  14. (14).
    S. Havlin and D. ben-Avraham, Adv. Phys., 36,695(1987).CrossRefGoogle Scholar
  15. (15).
    P. Meakin and H.E. Stanley, J. Phys. A, 17, L173(1984).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. Lianos
    • 1
  • P. Argyrakis
    • 2
  1. 1.University of Patras, School of EngineeringPatrasGreece
  2. 2.Department of Physics 313-1University of ThessalonikiThessalonikiGreece

Personalised recommendations