High Resolution Spectroscopy of Langmuir-Blodgett Films

  • Michel Orrit
  • Jacky Bernard
  • Dietmar Möbius
Part of the NATO ASI Series book series (NSSB, volume 258)


Persistent spectral hole burning (HB) is now in use for about fifteen years in the investigation the low-temperature dynamics of condensed organic materials [1-3]. It is well established that the hole width is very sensitive to matrix structure. In particular, a striking difference is found between crystals, where the holes are broadened according to the activation of a libration mode, and glasses or polymers where the temperature dependence is much slower (of the type Tα, 1≤ α ≤ 2) [4]. This behavior has been attributed to the broad spectrum of the specific low-energy excitations of glasses known as two-level-systems (TLS). The study of new ‘exotic’ matrices for dopant dye molecules may on the one hand bring valuable information on the dynamics and structure of these systems as compared to more conventional phases, on the other hand help us shed light on the mechanisms behind dephasing and spectral diffusion.


Hole Depth Superfluid Helium Hole Burning Hole SHAPE Surface Monolayer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    I. Zschokke, ed., Optical Spectroscopy of Glasses (Reidel, Dordrecht, 1986).Google Scholar
  2. [2]
    Optical Linewidths in Glasses, J. Luminescence 36, n 4,5 (1987).Google Scholar
  3. [3]
    E. W. Hoerner, ed., Topics in Current Physics, vol. 44, Persistent Spectral Hole-Burning, Science and Applications (Springer, Berlin, 1988).Google Scholar
  4. [4]
    R. M. Macfarlane and R. M. Shelby, J. Luminescence 36 (1987) 179.CrossRefGoogle Scholar
  5. [5]
    H. Kuhn, D. Mobius and H. Biicher, in: Physical Methods of Chemistry Vol. 1, part III B, eds. A. Weissberger and B. Rossiter (Wiley, New York 1972).Google Scholar
  6. [6]
    D. Möbius, ed. Langmuir-Blodgett 3, Thin Solid Films Vol. 159,160 (1988).Google Scholar
  7. [7]
    Proceedings of the 4th International Conference on Langmuir-Blodgett Films, Tsukuba (Japan), Thin Solid Films Vol. 178,179 (1989).Google Scholar
  8. [8]
    M. Orrit, J. Bernard and D. Mobius, Chem. Phys. Letters 156 (1989) 233.CrossRefGoogle Scholar
  9. [9]
    R. Jankowiak, R. Richert and H. Bassler, J. Phys. Chem. 89 (1985) 4569.CrossRefGoogle Scholar
  10. [10]
    Y. Kanematsu, R. Shiraishi, A. Imaoka, S. Saikan and T. Kushida, J. Chem. Phys. 91 (1989) 6579.CrossRefGoogle Scholar
  11. [11]
    H. Talon, M. Orrit and J. Bernard, Chem. Phys. 140 (1990) 177.CrossRefGoogle Scholar
  12. [12]
    B. L. Fearey, T. P. Carter and G. J. Small, Chem. Phys. 101 (1986) 279.CrossRefGoogle Scholar
  13. [13]
    J. Bernard, M. Orrit, R. I. Personov and A. D. Samoilenko, Chem. Phys. Letters, 164 (1989) 377.CrossRefGoogle Scholar
  14. [14]
    J. Bernard and M. Orrit, Proceedings of the DPC’89 Conference in Athens Ga. (U.S.A.), August 1989, to appear in J. Luminescence (1990).Google Scholar
  15. [15]
    Th. Sesselmann, W. Richter, D. Haarer and H. Morawitz, Phys. Rev. B 36 (1987) 7601.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michel Orrit
    • 1
  • Jacky Bernard
    • 1
  • Dietmar Möbius
    • 2
  1. 1.Centre de Physique Moléculaire Optique et HertzienneCNRS et Université de Bordeaux ITalenceFrance
  2. 2.Max Planck-Institut für biophysikalische ChemieGöttingenGermany

Personalised recommendations