Skip to main content

Experimental Evidence of Fractal Aggregates in Dense Microemulsions

  • Chapter
Large-Scale Molecular Systems

Part of the book series: NATO ASI Series ((NSSB,volume 258))

  • 221 Accesses

Abstract

The phase in which a microemulsion is of water in oil type, as shown by S.A.N.S. data, can be considered as a colloidal suspension. The pair potential presents a repulsive hard-core plus a Yukawa tail representing the attractive interaction1) V(r) = VA(r) + VR(r). This potential form, similar to that used in the DLVO (Derjaguin, Landau, Verwey and Overbeek)2 theory for colloids, shows two minima with a barrier and gives origin to interesting phenomena such as a phase transition with an upper cloud point temperature and a percolation-like transition 1,3 that suggest aggregation processes can be present in our system. Furthermore, the packing fraction of the droplets, keeping constant their sizes, can be easily changed1, giving rise to a very dense liquid. From a microscopic point of view, the motion of the individual droplet is constrained by the interaction among its neighbours. At normal densities, the probability of an entrapment of the particle, in a cage formed by its nearest neighbours, is low and the particle can diffuse over large distances. For high concentrations (very high packing) the diffusional motion of the particle is dominated by a continuous and, for long time trapping into structural cages, translational motion is possible only if a hole is opened in these cages (for high dense systems the probability of a hole to be opened is very small). This latter process, which corresponds to a slowing-down in the density correlation function, is the configurational or structural arrest, well described by mode-mode coupling theories4 on glassy state. The glass-transition can be studied by dynamic light scattering as a function of the microemulsion concentration; in particular we measure the dynamic structure factor S(k,τ) proportional to the autocorrelation function of the scattered field g1(k,τ). Its initial slope is the mean linewidth (Γ) of spatial fluctuations of wavevector k. Care measurements5 of this latter quantity have shown in the system AOT-water-decane the slowing-down of the density-density correlation function supporting the idea of large clustering effects among the spherical droplets in agreement with structural models of simple glasses generated by the assembly of hard spheres. Different theories6, in particular the well-known free volume theory, indicate that glass transition is a cooperative phenomenon where all particles are involved; in particular several models invoke the presence of clusters. Molecular Dynamics7 experiments in densely packed hard spheres give evidence that large clusters can arise spontaneously. Therefore, we have several suggestions that at high concentrations large clusters can originate from the droplets aggregation and light scattering (elastic and quasi elastic) experiments can give a direct way of studying the system, particularly in the region where it presents a glass transition verifying if ordered structures are present, and of measuring their dimensions and the kinetics of the aggregation. Also in an indirect way viscosity measurements can give information about such a process; in particular as shown in the final part of this work the data of this quantity as function of temperature and of volume fraction ø present a well pronounced peak that in the frame of the current theories can be ascribed to an aggregation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kotlarchyk, S.H. Chen, J.S. Huang and M.W. Kim, Phys. Rev. Lett. 53 941 (1984); Phys. Rev. A 29, 2054 (1984).

    Article  CAS  Google Scholar 

  2. E.J. Verwey and J. Th. Overbeek, “Theory of the stability of lyofobic colloids” (Elsevier, Amsterdam, 1948).

    Google Scholar 

  3. M.A. van Dijk, Phys. Rev. Lett. 55, 1003 (1985);

    Article  Google Scholar 

  4. M.W. Kim and J.S. Huang, Phys. Rev. A 34, 719.(1986)

    Article  CAS  Google Scholar 

  5. U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C, 17, 5915 (1984).

    Article  CAS  Google Scholar 

  6. U. Bengtzelius, Phys. Rev. A, 34, 5059 (1986).

    Article  CAS  Google Scholar 

  7. S.H. Chen and J.S. Huang, Phys. Rev. Lett. 55, 1888 (1965);

    Article  Google Scholar 

  8. E. Sheu, S.H. Chen, J.S. Huang and J.C. Sung, Phys. Rev. A. 39, 5867 (1989).

    Article  CAS  Google Scholar 

  9. see J. Jackie, Rep. Prog. Phys., 49, 171 (1986).

    Article  Google Scholar 

  10. H. Jonsson and H.C. Andersen, Phys. Rev. Lett.,60, 2295 (1988).

    Article  CAS  Google Scholar 

  11. J. E. Martin and D.W. Shaefer, Phys. Rev. Lett. 53, 2457 (1984).

    Article  CAS  Google Scholar 

  12. D. W. Shaefer and C.C. Han, in Dynamic light Scattering edited by R. Pecora (Plenum, New York, 1985).

    Google Scholar 

  13. J. E. Martin and J. Ackerson Phys. Rev. A 31, 1180 (1985)

    Article  Google Scholar 

  14. S.H. Chen and J. Teixeira, Phys. Rev. Lett. 57, 2583 (1986).

    Article  CAS  Google Scholar 

  15. D.A. Weitz, J.S. Huang, M.Y. Lin and J. Sung, Phys. Rev. Lett., 54, 141 (1985).

    Article  Google Scholar 

  16. M.J. Grimson and G.C. Barker, Europhys. Lett., 3, 511 (1987).

    Article  CAS  Google Scholar 

  17. R.F. Berg, M.R. Moldover. and J.S. Huang, J. Chem. Phys., 87, 3687 (1987).

    Article  CAS  Google Scholar 

  18. See for example “Scaling phenomena in disordered System” edited by R. Pynn and A. Skjeltorp (Plenum, New York 1985).

    Google Scholar 

  19. S. Chandrasekhar, Rev. Mod. Phys., 1943, 15, 1 (1943).

    Article  Google Scholar 

  20. D. Eagland in “Water a comprensive treatise” edited by Franks F., Vol. 5 (Plenum, New York, 1975).

    Google Scholar 

  21. R. Botet, R. Jullien and M. Kolb J. of Phys. A, 17 L75 (1984).

    Article  Google Scholar 

  22. P. Mills, J. Phys. (Paris) Lett. 46, L301 (1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Magazu, S., Majolino, D., Mallamace, F., Micali, N., Vasi, C. (1991). Experimental Evidence of Fractal Aggregates in Dense Microemulsions. In: Gans, W., Blumen, A., Amann, A. (eds) Large-Scale Molecular Systems. NATO ASI Series, vol 258. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5940-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5940-1_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5942-5

  • Online ISBN: 978-1-4684-5940-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics