Multi-Particle Relaxation in Electronically Excited Polymers: Distribution of Transition Rates from Fluorescence Data — A Numerical Approach

  • H. F. Kauffmann
  • G. Landl
  • H. W. Engl
Part of the NATO ASI Series book series (NSSB, volume 258)


Recently, there has been increased activity devoted to understanding the dynamics of electronic excitation in disordered polymeric materials by optical techniques.1,2 Time resolved fluorescence spectroscopy has become a powerful kinetic tool for probing polymer relaxation events in the range of a few picoseconds to some tens of nanoseconds. Typical physical processes in polymer-bound chromophores that have been investigated by transient fluorescence are excitation energy transport, rotational sampling and trap controlled interconversion.3 Among the various transient configurations measuring such short time-profiles, the statistical single-photon time correlation (SPT)4 is the most sensitive and now routinely applied in polymer photophysics.


Regularization Parameter Maximum Entropy Method Input Distribution Regularization Function Exponential Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bässler, Site-selective fluorescence spectroscopy of polymers, in:optical techniques to characterize polymer systems, H Bässler, ed., Elsevier, Amsterdam (1990).Google Scholar
  2. Molecular dynamics in restricted geometries, J. klafter, J. M. Drake, eds., J. Wiley, New York (1989).Google Scholar
  3. 3.
    H. F. Kauffmann, Electronic coupling and relaxation patterns in polymers, In: Photochemistry and Photophysics, Vol. 2, J Rabek, ed., CRC, Boca Raton (1990), P. 57Google Scholar
  4. 4.
    D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting, Academic, London (1984) Google Scholar
  5. Inverse and III-Posed Problems, H. W. Engl, C. W. Groetsch, eds., Academic, Orlando (1987)Google Scholar
  6. Deconvolution and Reconvolution of Analytical Signals, Applications to Fluorescence Spectroscopy, M. Bouchy, ed., Ensic-Inpl, Nancy (1983)Google Scholar
  7. 7.
    E. M. Buchberger, B. Mollay, W. D. Weixelbaumer, H. F. Kauffmann, and W. Klöpffer, Excited-state relaxation in bichromophoric rotors: time-resolved fluorescence of l, 3-di(n-carbazolyl)propane — a three-state analysis, J. chem. phys. 89:635 (1988)CrossRefGoogle Scholar
  8. 8.
    G. H. Fredrickson, and C. W. Frank, Nonexponential transient behavior in fluorescent polymeric systems, macromolecules 16:572 (1983)CrossRefGoogle Scholar
  9. 9.
    a). W. -D. Weixelbaumer, J. Bürbaumer, and H. F. Kauffmann, Excitation energy transport and reversible trapping in aromatic vinylpolymers: transient long-time behavior of a dissociative monomer-excimer system. a deterministic treatment, J. chem. phys. 83:1980 (1985);CrossRefGoogle Scholar
  10. b) H. F. Kauffmann, B. Mollay, W. -D. Weixelbaumer, J. Bürbaumer, M. Riegler, E. Meisterhofer, and F. R. Aussenegg, Electronic energy transport in aromatic vinyl-polymers: Nonexponential picosecond trapping in poly-(n-vinylcarbazole), j. chem. phys. 85:3566 (1986)CrossRefGoogle Scholar
  11. 10.
    B. Mollay, G. Landl, and H. F. kauffmann, Distributed electronic relaxation and nonexponential fluorescence in polymers: Reversibility in donor-excimer pairs — A perturbation theory treatment, J. chem. phys. 91:3744 (1989)CrossRefGoogle Scholar
  12. 11.
    a) D. R. James and W. R. Ware, Recovery of underlying distributions of lifetimes from fluorescence decay data, chem. phys. Lett. 126:7 (1986);CrossRefGoogle Scholar
  13. b) A Slemarczuk and W R Ware, Complex excited-state relaxation in (9-anthryl)-N, N- dimethylaniline derivatives evidenced by fluorescence lifetime distributions, J. phys. chem. 91:3677 (1987);CrossRefGoogle Scholar
  14. 12.
    a) A. D. Livesey and J. C. Brochon, Analyzing the distribution of decay constants in pulse-fluorometry using the maximum entropy method, Biophys. J. 52:693 (1987);CrossRefGoogle Scholar
  15. b) F. Merola, R. Rigler, A. Holmgren, and J. C. Brochon, Picosecond tryptophan fluorescence of thioredoxin: evidence for discrete species in slow exchange, biochemistry, 28:3383 (1989).CrossRefGoogle Scholar
  16. 13.
    a) A. Slemarczuk and W R Ware, Temperature dependence of fluorescence lifetime distributions in l, 3-di (1-Pyrenyl) propane with the maximum entropy method, J. phys. chem. 93:7609 (1989);CrossRefGoogle Scholar
  17. b) A. Slemarczuk and W R Ware, A novel approach to analysis of pyrene fluorescence decays in sodium dodecylsulfate micelles in the presence of cu2+ ions based on the maximum entropy method, Chem. Phys. Lett. 160:285 (1989).CrossRefGoogle Scholar
  18. 14.
    GLandl, T. Langthaler, H. W. Engl, and H. F. Kauffmann, Distribution of event times in time-resolved fluorescence: The exponential series approach — algorithm, regularization, analysis, J. Comp. Phys., in press.Google Scholar
  19. 15.
    R Fletcher and C Xu, Hybrid methods for nonlinear least squares, IMA J. Num. Anal. 7:371 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • H. F. Kauffmann
    • 1
  • G. Landl
    • 1
  • H. W. Engl
    • 2
  1. 1.Institut für Physikalische ChemieUniversität WienWienAustria
  2. 2.Institut für MathematikJohannes-Kepler-Universität LinzLinzAustria

Personalised recommendations