Advertisement

Randomly Branched Polymers

  • M. Daoud
Part of the NATO ASI Series book series (NSSB, volume 258)

Abstract

Polymers may be linear when the monomers are bifunctional, and branched when they are multifunctional. In the latter case, polymerisation is usually accompanied by gelation, i. e. the formation of an infinite, elastic network. In the following, we will by interested in the finite, eventually very large polymers that constitute the sol phase. This is characterized by a very broad distribution in the molecular weights, or polydispersity. The latter is similar to the cluster distribution in the percolation problem. Because of this, effective fractal dimensions are measured, related to both the fractal dimension of every polymer, and to the distribution of molecular weights. after recalling the main results for polydispersity, we review the recent ideas concerning both static and dynamic properties of branched polymer solutions.

Keywords

Fractal Dimension Elastic Network Characteristic Molecular Weight Percolation Problem Exclude Volume Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. G. de Gennes, Scaling concepts in polymer physics, Cornell University Press, Ans 1979.Google Scholar
  2. 2.
    D. Stauffer, Introduction to percolation theory, taylor and Francis, Ans 1985.CrossRefGoogle Scholar
  3. 3.
    P. J. Flory, Principles of Polymer Chemistry, Ans Cornell University press, (1953).Google Scholar
  4. 4.
    W. H. Stockmayer, J. Chem. Phys. 11, 45 (1943).CrossRefGoogle Scholar
  5. 5.
    M. Gordon, S. B. Ross-Murphy, Pure Appl. Chem. 43: 1 (1975).CrossRefGoogle Scholar
  6. 6.
    J. Isaacson, T. C. Lubensky, J. Phys. 42: 175 (1981).CrossRefGoogle Scholar
  7. 7.
    F. Schosseler, L. Leibler, Macromolecules, 18: 398, (1985).CrossRefGoogle Scholar
  8. 8.
    M. Adam, M. Delsanti, D. Durand, Macromolecules 18:2285, (1985).CrossRefGoogle Scholar
  9. 9.
    E. Patton, J. A. Wesson, M. Rubinstein, J. C. Wilson, L. E. Oppenheimer, Macromolecules, 22:1946, (1989).CrossRefGoogle Scholar
  10. 10.
    A. Lapp, L. Leibler, F. Schosseler, C. Strazielle, Macromolecules, 22: 2871, (1989).CrossRefGoogle Scholar
  11. 11.
    M. Daoud, F. Family, G. Jannink, J. Physique Lett., 45:199, (1984).CrossRefGoogle Scholar
  12. 12.
    J. E. Martin, B. J. Ackerson, Phys. Rev. A31:1180, (1985).Google Scholar
  13. 13.
    S. J. Candau, M. Ankrim, J. P. Munch, P. Rempp, G. Hild, R. Osaka, in Physical Optics of Dynamical Phenomena in Macromolecular Systems, W. De Gruyter, Berlin, 145, (1985).Google Scholar
  14. 14.
    L. Leibler, F. Schosseler, Phys. Rev. Lett., 55: 1110 (1985). See also in Physics of Finely Divided Matter, Springer Proc. Phys. 5, Springer, 135, (1985).CrossRefGoogle Scholar
  15. 15.
    E. Bouchaud, M. Delsanti, M. Adam, M. Daoud, D. Durand, J. Physique Lett., 47: 1273, (1986).CrossRefGoogle Scholar
  16. 16.
    M. Daoud, L. Leibler, Macromolecules, 21: 1497, (1988).CrossRefGoogle Scholar
  17. 17.
    M. Adam, M. Delsanti, J. P. Munch, D. Durand, J. Physique, 48: 1809, (1987).CrossRefGoogle Scholar
  18. M. Delsanti, J. P. Munch, D. Durand, J. P. Busnel, M. Adam, to be published.Google Scholar
  19. 19.
    D. Durand, M. Delsanti, M. Adam, J. M. Luck, Europhys. Lett., 3: 297, (1987).CrossRefGoogle Scholar
  20. 20.
    A. L. Efrös, B. I. Schklovskii, Physica Status Solidi, B76:475, (1976).CrossRefGoogle Scholar
  21. 21.
    M. Rubinstein, R. H. Colby, J. R. Gillmor, Polymer preprint 30: 1, (1989). See also in Space-Time Organization in Macromolecular Fluids, F. Tanaka, T. Ohta and M. Doi Eds, Springer Verlag, (1989).Google Scholar
  22. 22.
    J. E. Martin, D. Adolf, J. P. Wilcoxon, Phys. Rev. Lett., 61:2620, (1988).CrossRefGoogle Scholar
  23. 23.
    M. Daoud, J. Phys. A21: L237, (1988).Google Scholar
  24. 24.
    M. Daoud, J. E. Martin, in The fractal approach to heterogeneous Chemistry, D. Avnir Ed., J. Wiley, Ans 105, (1989).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • M. Daoud
    • 1
  1. 1.Laboratoire Léon BrillouinC.E.N. SaclayGif/Yvette cedexFrance

Personalised recommendations