Dynamic Percolation Theory for Diffusion of Interacting Particles: Tracer Diffusion in a Multi-Component Lattice-Gas

  • Rony Granek
Part of the NATO ASI Series book series (NSSB, volume 258)


Dynamic percolation theory is used to obtain the tracer diffusion coefficient in multicomponent mixtures of “non interacting” lattice-gas (with only blocking interactions, i.e. double occupancy of a lattice site is forbidden) within the effective medium approximation (EMA). Our approach is based on regarding the background particles as a changing random environment for the tracer. The result is expressed in terms of local fluctuation time parameters, which we attempt to determine from the lattice-gas dynamics. Special attention is given to the single component and the binary mixture cases, were we compare two possible choices for these parameters. The resulting tracer diffusion coefficient for both choices compares well with numerical simulations whenever single bond dynamics and single bond EMA are expected to be reliable.


Percolation Threshold Tracer Particle Jump Rate Effective Medium Approximation Chemical Diffusion Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, London, 1985), chap. 5.CrossRefGoogle Scholar
  2. (2).
    M. Sahimi, B. D. Hughes, L. E. Scriven and H. T. Davis, J. Chem. Phys. 78, 6849 (1983).CrossRefGoogle Scholar
  3. (3).
    S. D. Druger, A. Nitzan and M.A. Ratner, J. Chem Phys. 79, 3133 (1983).CrossRefGoogle Scholar
  4. (4).
    S. D. Druger, M. A. Ratner and A. Nitzan, Phys. Rev. B 31, 3939 (1985).CrossRefGoogle Scholar
  5. (5).
    S. D. Druger in Transport and Relaxation Processes in Random Materials, edited by J. Klafter, R. J. Rubin and M.F. Shlesinger (World Scientific, Singapore, 1986).Google Scholar
  6. (6).
    R. Granek, A. Nitzan, S. D. Druger and M. A. Ratner, Solid State Ionics 28–30, 120 (1988).CrossRefGoogle Scholar
  7. (7).
    S. D. Druger and M. A. Ratner, Chem. Phys. Lett. 151, 434 (1988)CrossRefGoogle Scholar
  8. (8).
    S. D. Druger and M.A. Ratner, Phys. Rev. B 38, 12,589 (1988)Google Scholar
  9. (9).
    A. K. Harrison and R. Zwanzig, Phys. Rev. A 32, 1072 (1985).CrossRefGoogle Scholar
  10. (10).
    R. Granek and A. Nitzan, J. Chem. Phys. 90, 3784 (1989)CrossRefGoogle Scholar
  11. (11).
    R. Granek and A. Nitzan, to be published.Google Scholar
  12. (12).
    R. Granek and A. Nitzan, J. Chem. Phys. 92, 1329 (1990).CrossRefGoogle Scholar
  13. (13).
    R. Kikuchi, Prog. Theor. Phys. Suppl. 35, 1 (1966).CrossRefGoogle Scholar
  14. (14).
    (a). K. W. Kehr, R. Kutner and K. Binder, Phys. Rev. B 23, 4931 (1981).CrossRefGoogle Scholar
  15. (b). R. Kutner and K. W. Kehr, Phil. Mag. A 48, 199 (1983).CrossRefGoogle Scholar
  16. (15).
    O. F. Sankey and P. A. Fedders, Phys. Rev. B 15, 3586 (1977).CrossRefGoogle Scholar
  17. (16).
    S. R. De Groot and P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969).Google Scholar
  18. (17).
    K. W. Kehr, K. Binder and S. M. Reulein, Phys. Rev. B 39, 4891 (1989).CrossRefGoogle Scholar
  19. (18).
    M. Silverberg, M.A. Ratner, R. Granek and A. Nitzan, J. Chem. Phys. (in press).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Rony Granek
    • 1
  1. 1.School of Chemistry, Sackler Faculty of Exact SciencesTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations