Advertisement

Electronic Excitations in Polysilanes: Frenkel Excitons of a Disordered Chain

  • A. Tilgner
  • H. P. Trommsdorff
  • J. M. Zeigler
  • R. M. Hochstrasser
Part of the NATO ASI Series book series (NSSB, volume 258)

Abstract

The soluble, disubstituted polysilanes, (SiXY)n, present a class of novel materials with interesting electronic, optical, conformational and photochemical properties,1 useful for a number of applications (photoresists, photoconductors, non-linear optical media). The lowest energy electronic states correspond to σσ excitations of the polymer backbone, delocalized over several tens of monomer units, and give rise to a strong absorption in the near UV. Strong electronic conformational coupling manifests itself in phase transitions, observed in solid films as well as liquid solutions and accompanied by large shifts of the near UV absorption band.2 Many issues that were, and still are, a matter of debate for Π-conjugated polymers also arise for the σ-conjugated polysilanes. Among these are: Of what type is the elementary excitation? What limits excitation delocalization? Is the phase transition an inter- or intramolecular process? The present paper focuses on the second question and discusses the spectra of poly (di-n-hexyl) silane (PDHS). At liquid helium temperatures the absorption spectrum in glassy solutions consists of a band at ca. 350 nm (as compared to 320 nm in room temperature solutions), which is only 2.5 nm broad and composed of still narrower lines (1–4 cm-1), as revealed by spectral hole-burning.3,10,11 This spectrum is successfully simulated by numerical modelling, describing the excitation as a Frenkel exciton of a disordered linear chain.

Keywords

Oscillator Strength Acceptor State Site Energy Liquid Helium Temperature Participation Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For reviews see: R.D. Miller and J. Michl, Chem. Rev. 89 (1989) 1359CrossRefGoogle Scholar
  2. J. Michl, J.W. Downing, T. Karatsu, K.A. Klingensmith, G.M. Wallraff, R.D. Miller, in Inorganic and Organometallic Polymers, eds. M. Zeldin et al., ACS Symposium Series 36 (1987) 61Google Scholar
  3. J.M. Zeigler Synth. Met. 28 (1989) C581CrossRefGoogle Scholar
  4. 2.
    L.A. Harrah, J.M. Zeigler, J. Poly. Sci., Poly. Lett. Ed. 23 (1985) 209, and Macromolecules 20 (1987) 601CrossRefGoogle Scholar
  5. P. Trefonas, J.R. Damewood, R. West, R.D. Miller, Organometallics 4 (1985) 1318CrossRefGoogle Scholar
  6. 3.
    H.P. Trommsdorff, J.M. Zeigler, R.M. Hochstrasser J. Chem. Phys. 89 (1988) 4440CrossRefGoogle Scholar
  7. 4.
    H. Takeda, H. Teramae, N. Matsumoto, J. Amer. Chem. Soc. 108 (1986) 8186CrossRefGoogle Scholar
  8. A. Herman, B. Dreczewski, W. Wojnowski, Chem. Phys. 98 (1986) 7413Google Scholar
  9. 5.
    K.S. Schweizer, J. Chem. Phys. 85 (1986) 1156, 1176Google Scholar
  10. 6.
    G. Wenz, M.A. Miiller, M. Schmidt, G. Wegner Macromolecules 17 (1984) 837CrossRefGoogle Scholar
  11. 7.
    G. Rossi, R.R. Chance, R. Silbey, J. Chem. Phys. 90 (1989) 7594CrossRefGoogle Scholar
  12. 8.
    K.S. Schweizer, J. Chem. Phys. 85 (1986) 4181CrossRefGoogle Scholar
  13. 9.
    Y.R. Kim, M. Lee, J.R.G. Thorne, R.M. Hochstrasser, J.M. Zeigler, Chem. Phys. Lett. 145 (1988) 75CrossRefGoogle Scholar
  14. J.R.G. Thorne, R.M. Hochstrasser, J.M. Zeigler, J. Phys. Chem. 1988, 92, 4275CrossRefGoogle Scholar
  15. 10.
    A. Tilgner, H.P. Trommsdorff, J.M. Zeigler, R.M. Hochstrasser, J. Lum. 45 (1990) in pressGoogle Scholar
  16. 11.
    A. Tilgner, J.P. Pique, H.P. Trommsdorff, J.M. Zeigler, R.M. Hochstrasser, Polym. Prepr. in pressGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • A. Tilgner
    • 1
  • H. P. Trommsdorff
    • 1
  • J. M. Zeigler
    • 2
  • R. M. Hochstrasser
    • 3
  1. 1.Laboratoire de Spectrométrie Physique, associé au C.N.R.S.Université Joseph Fourier Grenoble ISt. Martin d’Hères cedexFrance
  2. 2.SilchemyAlbuquerqueUSA
  3. 3.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations