Condensed Cooper Pairs and Macroscopic Quantum Phenomena

  • Alfred Rieckers
Part of the NATO ASI Series book series (NSSB, volume 258)


We give in the first section an introduction into the basic notions of operator algebraic quantum theory with the emphasis on the state space of the quasi-local algebra. Representation theory and decomposition theory are related with the macroscopic distinguishability (disjointness) of states. In section 2 we use this formalism to discuss superconductivity in terms of a gauge covariant BCS-model in which the operators of the macroscopic phase and of the condensed Cooper pairs play a decisive role. Two weakly coupled BCS-superconductors constitute a model for the Josephson junction, in which the condensed Cooper pairs tunnel across the isolation barrier of the junction and provide one component of the two-fluid model. The Josephson relations are microscopically derived as operator equations.

In the last section the problem of a coherent superposition of two junction states which are macroscopically different (by having different phase differences), leads to an unconventional extension of the observable algebra to include the number operators which have been shown to be incompatible with the phase operators. In this extended framework the semi-phenomenological energy terms (connected with the capacitance and self-inductance) can be added to the previous junction Hamiltonian. We then have a rigorous formalism by means of which the actual discussions of macroscopic quantum phenomena can be reconsidered, clarified, and confirmed to a surprisingly large extent.


Density Operator Josephson Junction Coherent Superposition Cyclic Vector Superselection Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Von neumann, “Mathematische Grundlagen der Quantenmechanik”, Springer, Berlin (1932)Google Scholar
  2. 2.
    G. Ludwig, “Die Grundlagen der Quantenmechanik”, Springer, Berlin (1954)Google Scholar
  3. 3.
    G. Ludwig, “Einführung in die Grundlagen der Theoretischen physik III”, Vieweg, Braunschweig (1976)Google Scholar
  4. 4.
    E. Alfsen, “Compact Convex sets and Boundary Integrals”, Springer, Berlin (1971)Google Scholar
  5. 5.
    O. Bratteli and D.W. Robinson, “Operator Algebras and Quantum Statistical Mechanics I, I”, Springer, New York (1979, 1981)Google Scholar
  6. 6.
    P.A.M. Dirac, “The Principles of Quantum Mechanics”, Clarendon Press, Oxford (1930)Google Scholar
  7. 7.
    E.P. Wigner, “Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Massenspektren”, Vieweg, Braunschweig (1931)Google Scholar
  8. 8.
    G.G. Emch, “Algebraic Methods in Statistical Mechanics and Quantum Field Theory”, Wiley-Interscience, New York (1972)Google Scholar
  9. 9.
    A. Rieckers, “Fundamentals of Algebraic Quantum Theory”, in: “Groups, Systems and Many-Body Physics”, P. Kramer and M. Dal Cin, eds., Vieweg, Braunschweig (1980)Google Scholar
  10. 10.
    A. Rieckers, in: “Group Theoretical Methods in Physics VI”, P. Kramer and A. Rieckers, eds., Springer, Berlin (1978)Google Scholar
  11. 11.
    A. Rieckers and H. Roos, Ann. Inst. Henri Poincaré 50:95 (1989)Google Scholar
  12. 12.
    A. Rieckers, in: “Semesterbericht Funktionalanalysis”, SS 1988: 169, Mathematisches Institut der Universität Tübingen (1988)Google Scholar
  13. 13.
    G.C. Wick, A.S. Wightmann, and E.P. Wigner, phys. Rev. 88: 101 (1952)CrossRefGoogle Scholar
  14. 14.
    J.M. Jauch, Helv. Phys. Acta 33:711 (1960)Google Scholar
  15. 15.
    H. Primas, “Chemistry, Quantum Mechanics, and Reductionism”, Springer, New York (1981)Google Scholar
  16. 16.
    S. Sakai, “C*-Algebras and W*-Algebras”, Springer, Berlin (1971)Google Scholar
  17. 17.
    G.k. Pedersen, “C*-Algebras and their Automorphism Groups”, Academic Press, London (1979)Google Scholar
  18. 18.
    M. Takesaki, “Theory of Operator Algebras I”, Springer, New York (1979)CrossRefGoogle Scholar
  19. 19.
    R. Haag and D. Kastler, J. Math. Phys. 5:848 (1964)CrossRefGoogle Scholar
  20. 20.
    D. Ruelle, “Statistical Mechanics”, Benjamin, New York (1969)Google Scholar
  21. 21.
    R. Haag, R.V. Kadison, and D. Kastler, Commun. Math. Phys. 16:81 (1970)CrossRefGoogle Scholar
  22. 22.
    R. Sikorski, “Boolean Algebras”, Springer, Berlin (1960)Google Scholar
  23. 23.
    G. Raggio and A. Rieckers, int. J. Theor. Phys. 22:267 (1983)CrossRefGoogle Scholar
  24. 24.
    S. Zanzinger, this proceedingsGoogle Scholar
  25. 25.
    J. Bardeen, L.N. Cooper, and J.R. Schrieffer, Phys. Rev. 108: 1175 (1957)CrossRefGoogle Scholar
  26. 26.
    G. Rickayzen, “Theory of Superconductivity”, J. Wiley, New York (1965)Google Scholar
  27. 27.
    D.J. Thouless, Phys. Rev. 117:1256 (1960)CrossRefGoogle Scholar
  28. 28.
    M. Tinkham, “Introduction to Superconductivity”, McGraw-Hill, Tokyo (1975)Google Scholar
  29. 29.
    W. Thirring, Commun. Math. Phys. 7:181 (1968)CrossRefGoogle Scholar
  30. 30.
    J.T. Lewis, V.A. Zagrebnoc, and J.V. Pulé, Helv. Phys. Acta 61:1063 (1988)Google Scholar
  31. 31.
    W. Fleig, Acta Phys. Austr. 55:135 (1983)Google Scholar
  32. 32.
    P.W. Anderson, Phys. Rev. 112:1900 (1958)CrossRefGoogle Scholar
  33. 33.
    H. Koppe and B. Mühlschlegel, Z. Phys. 151:613 (1958)CrossRefGoogle Scholar
  34. 34.
    W. Hauser, Dipl. Thesis, Tübingen (1987)Google Scholar
  35. 35.
    A. Rieckers and M. Ullrich, Acta Phys. Austr. 56:131 (1985)Google Scholar
  36. 36.
    A. Rieckers and M. Ullrich, Acta Phys. Austr. 56:259 (1985)Google Scholar
  37. 37.
    P. Carruthers and M.M. Nieto, Rev. Mod. Phys. 40:411 (1968)CrossRefGoogle Scholar
  38. 38.
    F. Rocca and M. Sirugue, Commun. Math. Phys. 34:111 (1973)CrossRefGoogle Scholar
  39. 39.
    A. Rieckers, J. Math. Phys. 25:2593 (1984)CrossRefGoogle Scholar
  40. 40.
    E. Duffner and A. Rieckers, Z. Naturforsch. 43a:521 (1988)Google Scholar
  41. 41.
    P. Bona, J. Math. Phys. 29:2223 (1988)CrossRefGoogle Scholar
  42. 42.
    N.N. Bogoliubov, Lectures on Quantum Statistics I, II”, Gordon and Breach, New York (1967, 1970)Google Scholar
  43. 43.
    J. Bardeen, Phys. Rev. Lett. 9:147 (1962)CrossRefGoogle Scholar
  44. 44.
    J.R. Schrieffer, “Theory of Superconductivity”, Benjamin, New York (1964)Google Scholar
  45. 45.
    B.D. Josephson, Phys. Lett. 1:251 (1962)CrossRefGoogle Scholar
  46. 46.
    V. Ambegaokar, in: “Superconductivity I, II”, R.D. Parks, ed., Dekker, New York (1969)Google Scholar
  47. 47.
    G.G. Emch and M. Guenin, J. Math. Phys. 7:915 (1966)CrossRefGoogle Scholar
  48. 48.
    A. Connes, Ann. Sci. Ecole norm. Sup. Paris (4)6:133 (1973)Google Scholar
  49. 49.
    B.D. Josephson, in: R.D. Parks46 Google Scholar
  50. 50.
    A. Rieckers and M. Ullrich, J. Math. Phys. 27:1082 (1986)CrossRefGoogle Scholar
  51. 51.
    A. Rieckers, in: “Frontiers of Nonequilibrium Statistical Physics”, G.T. Moore and M.O. Scully, eds., Plenum Press, New York (1986)Google Scholar
  52. 52.
    R.V. Kadison and J.R. Ringrose, “Fundamentals of the Theory of Operator Algebras I, II”, Academic Press, New York (1983, 1986)Google Scholar
  53. 53.
    M. Ullrich, Rep. Math. Phys. 23:67 (1986)CrossRefGoogle Scholar
  54. 54.
    A. Barone and G. Paterno, “Physics and Application of the Josephson Effect”, Wiley and Sons, New York (1982)CrossRefGoogle Scholar
  55. 55.
    E. Duffner, Z. Phys. B 63:37 (1986)CrossRefGoogle Scholar
  56. 56.
    T. Unnerstall, J. Stat. Phys. 54:379 (1989)CrossRefGoogle Scholar
  57. 57.
    B.D. Josephson, Rev. Mod. Phys. 36:216 (1964)CrossRefGoogle Scholar
  58. 58.
    F. London, “Superfluids I, II”, Wiley, New York (1950)Google Scholar
  59. 59.
    J.E. Mercereau, in: R.D. Parks46 Google Scholar
  60. 60.
    A.J. Leggett, Prog. Theor. Phys. 69:80 (1980)CrossRefGoogle Scholar
  61. 61.
    K. Hepp, Helv. Phys. Acta 45:237 (1972)Google Scholar
  62. 62.
    B.D. Josephson, Rev. Mod. Phys. 46:251 (1974)CrossRefGoogle Scholar
  63. 63.
    M. Takesaki, “Tomita’s Theory of Modular Hilbert Algebras and its Applications”, Springer, Berlin (1970)Google Scholar
  64. 64.
    R. Haag, Nuovo Cim. 25:287 (1962)CrossRefGoogle Scholar
  65. 65.
    P.W. Anderson, in: E.R. Caianiello, “Lectures on the Many Body Problem”, Academic Press, London (1963)Google Scholar
  66. 66.
    U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30: 6419 (1984)CrossRefGoogle Scholar
  67. 67.
    J. Clarke and G. Schön, Europhys. News 17:94 (1986)Google Scholar
  68. 68.
    T. Unnerstall and A. Rieckers, Phys. Rev. B 39:2173 (1989)CrossRefGoogle Scholar
  69. 69.
    A.O. Caldeira and A.J. Leggett, Ann. Phys. 149:374 (1983)CrossRefGoogle Scholar
  70. 70.
    R.F. Voss and R.A. Webb, Phys. Rev. Lett. 47:647 (1981)CrossRefGoogle Scholar
  71. 71.
    M.H. Devoret, J.M. Martinis, and J. Clarke, Phys. Rev. Lett. 55:1908 (1985)CrossRefGoogle Scholar
  72. 72.
    J.M. Martinis, M.H. Devoret, and J. Clarke, Phys. Rev. Lett. 55:1543 (1985)CrossRefGoogle Scholar
  73. 73.
    A.J. Leggett and A. Garg, Phys. Rev. Lett. 54:857 (1985)CrossRefGoogle Scholar
  74. 74.
    A. Amann, this ProceedingsGoogle Scholar
  75. 75.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 49:1 (1987)CrossRefGoogle Scholar
  76. 76.
    R. Silbey and R.A. Harris, J. Phys. Chem. 93:7072 (1989), and R. Silbey, this proceedingsCrossRefGoogle Scholar
  77. 77.
    T. Unnerstall, Ph.D. Thesis, Tübingen (1990). (There the mathematical frame in the case of extensive junction couplings and reservoir couplings is analyzed. The somewhat negative result seems to provide further arguments for our weak coupling model.)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Alfred Rieckers
    • 1
  1. 1.Institut für Theoretische PhysikTübingenGermany

Personalised recommendations