Dimers, Repulsions, and the Absence of Localisation

  • Philip Phillips
  • H.-L. Wu
  • David Dunlap
Part of the NATO ASI Series book series (NSSB, volume 258)


We review here two models we have recently proposed which do not conform to the standard view that disorder precludes long range transport in 1-dimension. The two models we consider are the repulsive binary alloy and the random dimer model. We show that the mean-square displacement of an initially-localised particle in either of these models will grow in time as t3/2. Transport obtains in both models because √N of the electronic states are unscattered by the disorder. The relevance of these models to the conductivity of Fibonacci semiconductor lattices and polyaniline is discussed.


Electronic State Localisation Length Site Energy Fibonacci Sequence Matrix Element Versus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. W. Anderson, Phys. Rev. 109, 1492 (1958).CrossRefGoogle Scholar
  2. 2.
    F. Wegner, Z. Phys. B 25, 327 (1976)CrossRefGoogle Scholar
  3. E. Abrahams, P. W. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett. 42, 673 (1979)CrossRefGoogle Scholar
  4. A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).CrossRefGoogle Scholar
  5. 3.
    D. H. Dunlap, H.-L. Wu, and P. Phillips, submitted, Phys. Rev. Lett.; H.-L. Wu, Phys. Rev. B. submittedGoogle Scholar
  6. See also D. H. Dunlap, K. Kundu, and P. Phillips, Phys. Rev. B. 40, 10999 (1989)CrossRefGoogle Scholar
  7. D. H. Dunlap and P. Phillips, J. Chem. Phys. 92, 6093 (1990).CrossRefGoogle Scholar
  8. 4.
    S. Feng, private communication.Google Scholar
  9. 5.
    F. Zuo, M. Angelopoulos, A. G. MacDiarmid, and A. J. Epstein, Phys. Rev. B 36, 3475 (1987).CrossRefGoogle Scholar
  10. 6.
    H. -L. Wu and P. Phillips, in preparation.Google Scholar
  11. 7.
    J. Flores, J. Phys. Cond. Matt 1, 8471 (1989).CrossRefGoogle Scholar
  12. 8.
    R. Clarke, T. Moustakas, K. Bajema, D. Grier, W. dos Passos, and R. Merlin, Superlattices and microstructures B4, 371 (1988).Google Scholar
  13. 9.
    D. Shechtman, I. Belch, D. Gratias, and J. W. Cahn, Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
  14. 10.
    M. Kohmoto, L. P. Kadanoff, and C. Tang, Phys. Rev. Lett. 50, 1870 (1983)CrossRefGoogle Scholar
  15. T. Odagaki and L. Friedman, Solid State Comm. 57, 915 (1986).CrossRefGoogle Scholar
  16. 11.
    J. Kollar and A. Suto, Phys. Lett. A. 117, 203 (1986)CrossRefGoogle Scholar
  17. F. Laruelle and B. Etienne, Phys. Rev. B. 37, 4816 (1988).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Philip Phillips
    • 1
  • H.-L. Wu
    • 1
  • David Dunlap
    • 2
  1. 1.Department of ChemistryRm. 6-223 Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Dept. Phys.Univ. New MexicoAlberquerqueUSA

Personalised recommendations