How Universal is the Scaling Theory of Localization?

  • Michael Schreiber
Part of the NATO ASI Series book series (NSSB, volume 258)


The numerical implementation of the one-parameter scaling theory of localization is reviewed for the Anderson model of disordered solids. A finite-size scaling procedure is used to derive the 3D localization length and d.c.-conductivity from the raw data computed for quasi-1D systems by the strip-and-bar method. While a common scaling function can be unambiguously obtained for different distributions of the diagonal disorder in the Anderson model, discrepancies appear between the box and the Gaussian distribution with regard to the derived critical exponents. To discuss these effects, new results are presented for a triangular distribution, and a new method for the computation of the critical exponents is introduced, which yields larger values than previously obtained.


Lyapunov Exponent Transfer Matrix Critical Exponent Critical Behaviour Anderson Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Anderson, Phys. Rev. B 109, 1492 (1958)CrossRefGoogle Scholar
  2. 2.
    F.J. Wegner, Z. Phys. B 25, 327 (1976)CrossRefGoogle Scholar
  3. 3.
    E. Abrahams, P.W. Anderson, D.C. Licciardello, T.v. Ramakrishnan, Phys. Rev. Letters 42, 673 (1979)CrossRefGoogle Scholar
  4. 4.
    A. MacKinnon, B. Kramer, Phys. Rev. Letters 47, 1546 (1981); Z. Phys. B 53, 1 (1983)CrossRefGoogle Scholar
  5. 5.
    F. Wegner, in: Localization, Interact ion and Transport Phenomena, Eds. B. Kramer, G. Bergmann, Y. Bruynseaede, Springer Ser. Sol. St. Sci. 61, 99 (1985)CrossRefGoogle Scholar
  6. 6.
    D. Vollhardt, P. Wolfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Letters 48, 699 (1982)CrossRefGoogle Scholar
  7. 7.
    R. Oppermann, K. Jungling, Phys. Lett. 76, 449 (1980); Z. Phys. B 38, 93 (1980)CrossRefGoogle Scholar
  8. 8.
    A. MacKinnon, in: Localization, Interaction and Transport Phenomena, Eds. B. Kramer, G. Bergmann, Y. Bruynseaede, Springer Ser. Sol. St. Sci. 61, 90 (1985)CrossRefGoogle Scholar
  9. 9.
    F. Wegner, private communicationsGoogle Scholar
  10. 10.
    M. Schreiber, B. Kramer, A. MacKinnon, Phys. Scripta T 25, 67 (1988)Google Scholar
  11. 11.
    B. Kramer, K. Broderix, A. MacKinnon, M. Schreiber, Physica A 161 (1990), in printGoogle Scholar
  12. 12.
    R. Oppermann, private communicationsGoogle Scholar
  13. 13.
    see Ref. 10, 11 and the references thereinGoogle Scholar
  14. 14.
    B. Bulka, M. Schreiber, B. Kramer, Z. Phys. B 66, 21 (1987)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Michael Schreiber
    • 1
  1. 1.Institut für Physikalische ChemieJohannes-Gutenberg-UniversitätMainzF.R.Germany

Personalised recommendations