Random Matrix Theory and Anderson Localisation

  • Spiros Evangelou
Part of the NATO ASI Series book series (NSSB, volume 258)


The random statistical ensembles of short-ranged tight-binding lattice Hamiltonian matrices are introduced and studied in connection with the Anderson metal-insulator transition. The short and long range spectral fluctuation-correlation properties are examined for systems classified into three symmetry universality classes. In the metallic regime for two and three dimensions the results are consistent with the properties of level repulsion and spectral rigidity known from the Gaussian random matrix ensembles of Wigner-Dyson. In the insulating regime the spectrum is instead uncorrected. The eigenvalue statistics is directly related to the universal conductance fluctuations observed in small metallic (mesoscopic) systems. The corresponding statistical behaviour of the wave functions is discussed and found to exhibit multifractal scaling at the transition. Similarities of the Anderson transition with what is known as the transition to “quantum chaos” are also discussed.


Universality Class Random Matrix Theory Mobility Edge Conductance Fluctuation Random Matrix Ensemble 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.W. Anderson. Phys. Rev. 109, 1492 (1958)Google Scholar
  2. 2.
    D. J. Thouless. Phys.Rep. 13 93 [1974] and D.J. Thouless, in “Hi-Condensed Matter, Les Houches 1978 Session XXXI, Eds R Balian, R. Maynard and G. Toulouse [North Holland, Amsterdam, 1979CrossRefGoogle Scholar
  3. 3.
    E. Abrahams, P.W. Anderson, D.C. Licciardello and T. V. Ramakrishnan, Phys.Rev.Lett. 42, 673, (1979)CrossRefGoogle Scholar
  4. 4.
    S. Hikaml A I. Larkin and Y. Nagaoka, Physics Reports 67, 15 (1980)CrossRefGoogle Scholar
  5. 5.
    S. N. Evangelou and T. A. L. Ziman, Phys.C20, L235 (1987)Google Scholar
  6. 6.
    P. A. Lee and A D. Stone, Phys. Rev. Lett 55, 1622 (1985)CrossRefGoogle Scholar
  7. 7.
    B. L. Altshuler. JETP Lett 41 648 (1985)Google Scholar
  8. 8.
    C. E. Porter, in “Statistical Theories of Spectra: Fluctuations”, (Academic Press, New York,1965)Google Scholar
  9. 9.
    S. N. Evangelou, Phys. Rev. B. 39, 12895 (1989) and References thereinCrossRefGoogle Scholar
  10. 10.
    B.L.Altshuler. Proc. 18, Int. Conf. on Low Temperature Phys.Kyoto Jap. Journal of Ap Phys. Supp. 26, 1938 (1987) and References thereinGoogle Scholar
  11. 11.
    U. Sivan and Y. Imry. Phys. Rev. B35, 6074 (1987)Google Scholar
  12. 12.
    B. Echardt. Phvs.Rep. 163, 205 (1988)CrossRefGoogle Scholar
  13. 13.
    J.-L. Pichard, N. Zanon, Y. Imrv and A. D. Stone, J.Phys.France 51 587 (1990)CrossRefGoogle Scholar
  14. 14.
    T. C. Halsev, M. H Jensen, L. P. Kadanoff, I. Procaccia and B. Shairman, Phys. Rev. A33, 1141 (1986)Google Scholar
  15. 15.
    H. E. Stanley and P. Meakin Nature 335, 405 (1988)CrossRefGoogle Scholar
  16. 16.
    S. N. Evangelou, J.Phys.A.: Math, and Gen. (to appear)Google Scholar
  17. 17.
    S. N. Evangelou. J.Phvs. C20, L295, (1987)Google Scholar
  18. 18.
    S. N. Evangelou in “Disordered Systems and New Materials”, Eds N. Kirov, M. Borissov and A. Vavrek World Scientific, p783 (1989)Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Spiros Evangelou
    • 1
  1. 1.Physics Department, Division of Theoretical PhysicsUniversity of IoanninaIoanninaGreece

Personalised recommendations