Gauge Chemistry

  • Jan C. A. Boeyens
Part of the NATO ASI Series book series (NSSB, volume 258)


Gauge theory describes interactions in terms of internal symmetries that reflect an intrinsic property of space time. It has revolutionized particle physics, but still awaits application in chemistry. It affects free particles through the quantum potential and mediates their response to chemical environments. Simple applications are outlined and the origin of the quantum potential in the vacuum is discussed.


Gauge Theory Gauge Transformation Gauge Invariance Gauge Field Gauge Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Finkelstein (1965). The logic of quantum physics. Trans. N.Y. Acad. Sci., 25, 621–628.Google Scholar
  2. [2]
    J.S. Bell (1987). Speakable and Unspeakable in Quantum Mechanics. University Press, Cambridge.Google Scholar
  3. [3]
    H. Weyl (1918). Gravitation and Elektrizitat. Sitzber. Preuss. Akad. Wiss. Berlin, 465–480.Google Scholar
  4. [4]
    R. Adler, M. Bazin, M. Schiffer (1965). Introduction to General Relativity. McGraw-Hill, New York.Google Scholar
  5. [5]
    W. Pauli (1941) Relativistic field theories of elementary particles. Rev. Mod. Phys. 13, 203–232.CrossRefGoogle Scholar
  6. [6]
    F. London (1927). Quantenmechanische Deutung der Theorie von Weyl. Z. Physik. 42, 375–389.CrossRefGoogle Scholar
  7. [7]
    D. Bohm (1952). A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85, 166–179.Google Scholar
  8. [8]
    C.N. Yang (1987). Square root of minus one, complex phases and Erwin Schrodinger; in C.W. Kilmister (ed) Schrodinger. Centenary celebration of a polymath. Cambridge University Press.Google Scholar
  9. [9]
    K. Huang (1982). Quarks, Leptons k Gauge Fields. World Scientific. Singapore.Google Scholar
  10. [10]
    F.A. Cotton (1963). Chemical Applications of Group Theory. Wiley. New York.Google Scholar
  11. [11]
    S. Clough (1989). Gauge Theory — A new outlook on solid state dynamics. Adv. Mater. 296–298.Google Scholar
  12. [12]
    H. Primas (1981). Chemistry, quantum mechanics and reductionism—perspectives in theoretical chemistry, Lecture Notes in Chemistry, Springer, Berlin.Google Scholar
  13. [13]
    J.C.A. Boeyens (1985). Molecular mechanics and the structure hypothesis. Struct, and Bonding, 63, 65–101, and references therein.CrossRefGoogle Scholar
  14. [14]
    J.C.A. Boeyens (1990). The geometry of quantum events. S. Afr. J. Sci., submitted for publication.Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Jan C. A. Boeyens
    • 1
  1. 1.Department of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations