Theories of Molecular Chirality: A Short Review

  • Anton Amann
Part of the NATO ASI Series book series (NSSB, volume 258)


The discussion of chirality from a quantum mechanical point of view has a long history. It was first observed by [1] that “chiral” states — once prepared — are stable for a long time, depending of course on the height of the respective double-minimum potential in the Born-Oppenheimer description. There “chiral” states are simply meant to be states which are localized in one of the potential’s wells.


Pure State Radiation Field Stochastic Differential Equation Joint System Chiral Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hund, F.: Zur Deutung der Molekelspektren III, Z. Phys. 43, 805–826 (1927).CrossRefGoogle Scholar
  2. [2]
    Kukolich, S. G., J. H. S. Wang and D. E. Oates: Molecular beam maser measurements of relaxation cross sections in NH 3, Chem. Phys. Lett. 20, 519–524 (1973).CrossRefGoogle Scholar
  3. [3]
    Einstein, A.: Elementare Überlegungen zur Interpretation der Quantenmechanik, In: Scientific Papers, presented to Max Born. Edinburgh. Oliver Boyd (1953).Google Scholar
  4. [4]
    Born, M.: Albert Einstein, Hedwig und Max Born, Briefwechsel 1916–1955, München. Nymphenburger Verlagshandlung (1969).Google Scholar
  5. [5]
    Schrödinger, E.: Discussion of probability relations between separated systems, Proc. Cambr. Phil. Soc. 31, 555–563 (1935).CrossRefGoogle Scholar
  6. [6]
    Schrödinger, E.: Die gegenwartige Situation in der Quantenmechanik, Naturwissen-schaften 23, 807–812, 823–828, 844–849 (1935).CrossRefGoogle Scholar
  7. [7]
    Schrödinger, E: Probability relations between separated systems, Proc. Cambr. Phil. Soc. 32, 446–452(1936).CrossRefGoogle Scholar
  8. [8]
    Primas, H.: Zur Quantenmechanik makroskopischer Systeme, In: Wieviele Leben hat Schrddingers Katze ? Ed. by J. Audretsch and K. Mainzer. Mannheim. B.I.-Wissenschaftsverlag (1990)Google Scholar
  9. [9]
    Amann, A.: Molecules coupled to their environment, in this same volume.Google Scholar
  10. [10]
    Quack, M.: On the measurement of the parity violating energy difference between enantiomers, Chem. Phys. Lett. 132, 147–153 (1986).CrossRefGoogle Scholar
  11. [11]
    Quack, M.: Structure and dynamics of chiral molecules, Angew. Chem. Int. Ed. Engl. 28, 571–586 (1989).CrossRefGoogle Scholar
  12. [12]
    Ford, G. W., J. T. Lewis and R. F. O’Connell: Quantum Langevin equation, Phys. Rev. A 37, 4419–4428 (1988).CrossRefGoogle Scholar
  13. [13]
    Leggett, A. J., S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger: Dynamics of the dissipative two-state system, Rev. Mod. Phys. 59, 1–85 (1987).CrossRefGoogle Scholar
  14. [14]
    Smedt, P. d., D. Dürr, J. L. Lebowitz and C. Liverani: Quantum system in contact with a thermal environment: Rigorous treatment of a simple model, Commun. Math. Phys. 120, 195–231 (1988).CrossRefGoogle Scholar
  15. [15]
    Ford, G. W., M. Kac and P. Mazur: Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6, 504–515 (1965).CrossRefGoogle Scholar
  16. [16]
    Primas, H.: Induced nonlinear time evolution of open quantum objects, To be published in: Proceedings of the NATO ASI “Sixty-two Years of Uncertainty: Historical, Philosophical, Physics Inquiries into the Foundations of Quantum Physics”, Erice (Italy), 5. -15. August 1989. Ed. by A. I. Miller. New York. Plenum Press (1990).Google Scholar
  17. [17]
    Funck, P.: Die Landau-Lifschitz-Gleichung als nichtlineare Schrödingergleichung. Diplomarbeit ETH-Zürich. Unpublished (1989).Google Scholar
  18. [18]
    Harris, R. A. and L. Stodolsky: On the time-dependence of optical activity, J. Chem. Phys. 74, 2145–2155 (1981).CrossRefGoogle Scholar
  19. [19]
    Harris, R. A. and R. Silbey: On the stabilization of optical isomers through tunneling friction, J. Chem. Phys. 78, 7330–7333 (1983).CrossRefGoogle Scholar
  20. [20]
    Claverie, P. and G. Jona-Lasinio: Instability of tunneling and the concept of molecular structure in quantum mechanics: The case of pyramidal molecules and the enantiomer problem, Phys. Rev. A 33, 2245–2253 (1986).CrossRefGoogle Scholar
  21. [21]
    Meyer, R. and R. R. Ernst: Hydrogen transfer in double minimum potential: Kinetic properties derived from quantum dynamics, J. Chem. Phys. 86, 784–801 (1987).CrossRefGoogle Scholar
  22. [22]
    Nielaba, P., J. L. Lebowitz, H. Spohn and J. L. Vallés: Behavior of a quantum particle in contact with a classical heat bath, J. Stat. Phys. 55, 745–767 (1989).CrossRefGoogle Scholar
  23. [23]
    Silbey, R. and R. A. Harris: Tunneling of molecules in low-temperature media: an elementary description, J. Phys. Chem. 93, 7062–7071 (1989).CrossRefGoogle Scholar
  24. [24]
    Einstein, A., B. Podolsky and N. Rosen: Can quantum-mechanical description of physical reality be considered complete ?, Phys. Rev. 47, 111–780 (1935).CrossRefGoogle Scholar
  25. [25]
    Aspect, A., J. Dalibard and G. Roger: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s inequalities, Phys. Rev. Lett. 49, 91–94(1982).Google Scholar
  26. [26]
    Primas, H.: Chemistry, Quantum Mechanics, and Reductionism. Perspectives in Theore tical Chemistry, 2nd revised ed. Berlin. Springer (1983).CrossRefGoogle Scholar
  27. [27]
    Primas, H.: Mathematical and philosophical questions in the theory of open and macroscopic quantum systems, To be published in: Proceedings of the NATO ASI “Sixty-two Years of Uncertainty: Historical, Philosophical, Physics Inquiries into the Foundations of Quantum PhysicsErice (Italy), 5–15. August 1989. Ed. by A. I. Miller. New York. Plenum Press (1990).Google Scholar
  28. [28]
    Pfeifer, P.: Chiral Molecules–a Superselection Rule Induced by the Radiation Field, Zürich. Thesis ETH-Zürich No. 6551, ok Gotthard S+D AG (1980).Google Scholar
  29. [29]
    Cohen-Tannoudji, C., J. Dupont-Roc and G. Grynberg: Photons and Atoms New York. John Wiley & Sons (1989).Google Scholar
  30. [30]
    Amann, A.: Molecules Coupled to Their Environment. Habilitationsarbeit, ETH-Zürich. Unpublished (1990).Google Scholar
  31. [31]
    Amann, A.: Chirality as a classical observable in algebraic quantum mechanics, In: Fractals, Quasicrystals, Chaos, Knots and Algebraic Quantum Mechanics. Ed. by A. Amann, L. Cederbaum and W. Gans. Dordrecht. Kluwer (1988), Pp. 305–325.Google Scholar
  32. [32]
    Spohn, H., R. Stückl and W. Wreszinski: Localisation for the spin J-boson Hamiltonian, preprint (1990).Google Scholar
  33. [33]
    Bleaney, B. and J. H. N. Loubser: Collision broadening of the ammonia inversion spectrum at high pressures, Nature 161,522–523 (1948).CrossRefGoogle Scholar
  34. [34]
    Anderson, P. W.: On the anomalous line-shapes in the ammonia inversion spectrum at high pressures, Phys. Rev. 75, 1450 (1949).CrossRefGoogle Scholar
  35. [35]
    Margenau, H.: Inversion frequency of ammonia and molecular interaction, Phys. Rev. 76, 1423–1429 (1949).CrossRefGoogle Scholar
  36. [36]
    Jona-Lasinio, G., F. Martinelli and E. Scoppola: New approach to the semiclassical limit of quantum mechanics, Commun. Math. Phys. 80, 223–254 (1981).CrossRefGoogle Scholar
  37. [37]
    Graffi, S., V. Brecchi and G. Jona-Lasinio: Tunneling instability via perturbation theory, J. Phys. A 17, 2935–2944 (1984).CrossRefGoogle Scholar
  38. [38]
    Simon, B.: Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant, J. Functional Analysis 63, 123–136 (1985).CrossRefGoogle Scholar
  39. [39]
    Jona-Lasinio, G. and P. Claverie: Symmetry breaking and classical behaviour, Progr. Theor. Phys. Suppl. 86, 54–59 (1986).CrossRefGoogle Scholar
  40. [40]
    Harris, R. A. and L. Stodolsky: Quantum beats in optical activity and weak interactions, Phys. Lett. B 78, 313–317 (1978).CrossRefGoogle Scholar
  41. [41]
    Barron, L. D.: Symmetry and molecular chirality, Chem. Soc. Rev. 15, 189–223 (1986).CrossRefGoogle Scholar
  42. [42]
    Primas, H.: The measurement process in the individual interpretation of quantum mechanics, In: Quantum Theory without Reduction. Ed. by M. Cini and J.-M. Lévy-Leblond. Bristol. IOP Publishing Ltd. (1990).Google Scholar
  43. [43]
    Raggio, G.: States and Composite Systems in W*-Algebraic Quantum Mechanics, Zürich. Thesis ETH-Zürich No. 6824, ADAG AG (1981).Google Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • Anton Amann
    • 1
  1. 1.Laboratory of Physical ChemistryETH-ZentrumZürichGermany

Personalised recommendations