In Search of Scaling Laws in Porous Silica Gels

  • J. M. Drake
  • P. Levitz
  • J. Klafter
Part of the NATO ASI Series book series (NSSB, volume 258)


The role of surface morphology in adsorption processes has been a long standing problem. When adsorption takes place on the interior surface of porous materials (i.e. silica gel, alumina oxide, phase separated glasses, etc.), describing the adsorption process through the thermodynamics of the adsorbates/surface interactions can be complex, making it difficult to interpret the chemical behavior of these systems. These types of porous materials are used in both separation and/or catalytic processes throughout the chemical industry. The selection of a porous material for a specific application is done in part by understanding the interplay between the morphological features of the pore interface and the adsorption and transport properties of adsorbates confined within these pore networks1–3.


Malachite Green Small Angle Scattering Amyl Alcohol Fractal Roughness Pore Interface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Drake and J. Klafter, Physics Today 43:46 (1990).CrossRefGoogle Scholar
  2. 2.
    Molecular Dynamics in Restricted Geometries, ed. J. Klafter and J., M. Drake, John Wiley, New York (1989).Google Scholar
  3. 3.
    J. M. Drake, P. Levitz, S. K. Sinha and J. Klafter, Chem. Phys. 128:199–207 (1988).CrossRefGoogle Scholar
  4. 4.
    D. Avnir, D. Farin, and P. Peiffer, Nature 308:261–263 (1984).CrossRefGoogle Scholar
  5. 5.
    D. Avnir and D. Farin, New J. Chem. 14:197 (1990).Google Scholar
  6. 6.
    R. Kopelman, Science. 241:1620–1626 (1988).CrossRefGoogle Scholar
  7. 7.
    A. Katz and A. Thompson, Phys. Rev. Lett. 54:1325–1328 (1985).CrossRefGoogle Scholar
  8. 8.
    H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 53:596–599 (1984).CrossRefGoogle Scholar
  9. 9.
    P. Levitz, J. M. Drake, and J. Klafter, J. Chem. Phys. 89:5224–5236 (1988).CrossRefGoogle Scholar
  10. 10.
    R. L. Hoffman, D. G. McConnel, G. R. List and C. D. Evans, Science 90:550–551 (1967).CrossRefGoogle Scholar
  11. 11.
    P. Pfeifer, D. Avnir, and D. Karin, J. Stat. Phys. 36:699–716 (1984).CrossRefGoogle Scholar
  12. 12.
    J. Oscik, Adsorption (Ellis Horwood, Chichester) (1982).Google Scholar
  13. 13.
    J. J. Kipling, Adsorption from Solution of Nonelectrolytes, Academic Press, London (1965).Google Scholar
  14. 14.
    S. Schay and L. G. Nagy, J. of Colloid and Interface Sci. 38:302–311 (1972).CrossRefGoogle Scholar
  15. 15.
    A. L. McClellan and H. F. Harnsberger, J. Colloid, and Interface Sci.. 23:577–599 (1967).CrossRefGoogle Scholar
  16. 16.
    J. M. Drake, P. Levitz and J. Klafter, New J. Chem. 14:77 (1990).Google Scholar
  17. 17.
    S. B. Ross, D. M. Smith, A. J. Hurd and D. W. Schaefer, Langmuir 4:977 (1988).CrossRefGoogle Scholar
  18. 18.
    P. W. Schmidt, in: “Characterization of Porous Solids,” K. K. Unger, J. Rouquerol, K. S. W. Sing and H. Karl, ed., Elsevier, Amsterdam (1988).Google Scholar
  19. 19.
    J. M. Drake, P. Levitz, and S. Sinha, Mat. Res. Soc. Symp. Proc. 73:305 (1986).CrossRefGoogle Scholar
  20. 20.
    T. Forster, Z. Naturforsch 4A:321 (1949).Google Scholar
  21. 21.
    J. Klafter and A. Blumen, J. Chem. Phys. 80:874 (1984).CrossRefGoogle Scholar
  22. 22.
    P. Levitz and J. M. Drake, Phys. Rev. Lett. 58:686 (1987).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. M. Drake
    • 1
  • P. Levitz
    • 2
  • J. Klafter
    • 3
  1. 1.Exxon Research and Engineering CompanyAnnandaleUSA
  2. 2.CNRS, CRSOCIOrleans, Cedex 2France
  3. 3.School of ChemistryTel Aviv UniversityTel AvivIsrael

Personalised recommendations