Advertisement

Dynamics of Quantum Particles: Coupled Coherent and Incoherent Motion

  • P. Reineker
  • J. Köhler
  • A. Jayannavar
  • V. Kraus
  • H. Däubler
Part of the NATO ASI Series book series (NSSB, volume 258)

Abstract

Elementary excitation and transport properties in condensed matter are frequently described in terms of quasiparticles, such as electrons, plasmons, excitons, phonons, and polarons [1,2]. In the following we are mainly interested in these properties in connection with electrons and excitons [3–5] and if there is no need to differentiate between both kinds of particles, we denote them together as quantum particles. Also in organic materials, electrons naturally are of importance for the transport of charge, both in the case of ordinary and photoconductivity [6–8]. Excitons on the other hand play a role with respect to the energy transport in pure and doped molecular aggregates including photosynthetic systems.

Keywords

Line Shape Density Operator Diffusion Constant Quantum Particle Free Induction Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Haken, ”Quantenfeldtheorie des Festkörpers”, B. G. Teubner, Stuttgart (1973)Google Scholar
  2. [2]
    G. D. Mahan, ”Many Particle Physics”, Plenum Press, New York, London (1981)Google Scholar
  3. [3]
    V. M. Kenkre, P. Reineker, ”Exciton Dynamics in Molecular Crystals and Aggregates”, Springer Tracts in Modern Physics 94, Springer, Berlin, Heidelberg, New York (1982)Google Scholar
  4. [4]
    P. Reineker, H. Haken, H. C. Wolf, ”Organic Molecular Aggregates”, Springer Series in Solid-State Sciences 49, Springer, Berlin, Heidelberg, New York, Tokyo (1983)Google Scholar
  5. [5]
    V. M. Kenkre, ”Mathematical Methods for the Description of Energy Transfer”, in: Energy Transfer Processes in Condensed Matter, ed. B. di Bartolo, NATO ASI Series B 114, Plenum Press, New York, London, (1983)Google Scholar
  6. [6]
    M. Pope, Ch. E. Swenberg, ”Electronic processes in organic crystals”, Clarendon, Oxford (1982)Google Scholar
  7. [7]
    J. Simon, J.-J. Andre, ”Molecular Semiconductors”, Springer, Berlin, Heidelberg, New York, Tokyo (1985)CrossRefGoogle Scholar
  8. [8]
    N. Karl, ”Getting Beyond Impurity-Limited Transport in Organic Photoconductors”, in: Proceedings of the International Conference on the Science and Technology of Defect Control in Semiconductors, ed. K. Sumino, Elsevier (1990)Google Scholar
  9. [9]
    R. E. MerriMd, J. Chem. Phys. bf 28, 647 (1958)CrossRefGoogle Scholar
  10. [10]
    Th. Forster, Ann. Phys. (Leipzig), 2, 55 (1948)Google Scholar
  11. [11]
    D.L. Dexter, R.S. Knox, ”Excitons”, Interscience, New York (1965)Google Scholar
  12. [12]
    M. Trlifaj, Czech. J. Phys. 8, 510 (1958)CrossRefGoogle Scholar
  13. [13]
    H. Haken, G. Strobl, ”Exact Treatment of Coherent and Incoherent Triplet Exciton Migration”, in: The Triplet State, ed. A. Zahlan, Cambridge University Press, London (1967)Google Scholar
  14. [14]
    H. Haken, P. Reineker, Z. Phys. 249, 253 (1972)CrossRefGoogle Scholar
  15. [15]
    H. Haken, G. Strobl, Z. Phys. 262, 135 (1973)CrossRefGoogle Scholar
  16. [16]
    P. Reineker, H. Haken, ”The Coupled Coherent and Incoherent Motion of Frenkel Excitons in Molecular Crystals” in: Localization and Derealization in Quantum Chemistry, Vol. 2, eds. O. Chaivet, R. Daudel, S. Diner, J. P. Malrieu, D. Reidel Publishing Company, Dortrecht-Holland, Boston-USA (1976)Google Scholar
  17. [17]
    H. Haken, P. Reineker, ”Comments on the Interaction of Excitons and Phonons”, in: Excitons, Magnons and Phonons in Molecular Crystals, ed. A. Zahlan, Cambridge University Press, London (1968)Google Scholar
  18. [18]
    M. Grover, R. Silbey, J. Chem. Phys. 52, 2099 (1970)CrossRefGoogle Scholar
  19. M. Grover, R. Silbey, J. Chem. Phys. 54, 4843 (1971)CrossRefGoogle Scholar
  20. [19]
    V. M. Kenkre, R. S. Knox, Phys. Rev. B 9, 5279 (1974).CrossRefGoogle Scholar
  21. V. M. Kenkre, R. S. Knox, Phys. Rev. Lett. 33, 803 (1974)CrossRefGoogle Scholar
  22. [20]
    Y. Toyozawa, ”Localization and Derealization of an Exciton in the Phonon Field”, in: Organic Molecular Aggregates, eds. P. Reineker, H. Haken, H. C. Wolf, Springer, Berlin, Heidelberg, New York, Tokyo (1983)Google Scholar
  23. [21]
    E. I. Rashba, ”Self-Trapping of Excitons”, in: Excitons, eds. V.M. Agranovich, A.A. Maradudin, North Holland, Amsterdam, New York, Oxford (1982)Google Scholar
  24. [22]
    A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981)CrossRefGoogle Scholar
  25. [23]
    H. Grabert, U. Weiss, P. Hänggi, Phys. Rev. Lett. 52, 2193 (1984)CrossRefGoogle Scholar
  26. [24]
    P. Hanggi, J. Stat. Phys. 42, 105 (1986)CrossRefGoogle Scholar
  27. [25]
    P. W. Anderson, B. I. Halperin, C. M. Varma, Phil. Mag. 25, 1 (1972)CrossRefGoogle Scholar
  28. [26]
    P. Reineker, H. Morawitz, K. Kassner, Phys. Rev. B. 29, 4546 (1984)CrossRefGoogle Scholar
  29. [27]
    K.W. Kehr, K. Kitahara, J. Phys. Soc. Jpn. 56, 889 (1987)CrossRefGoogle Scholar
  30. [28]
    H. Wipf, A. Magerl, S.M. Shapiro, S.H. Satiga, W. Thomlinson, Phys. Rev. Lett. 46, 947 (1981)CrossRefGoogle Scholar
  31. [29]
    R. S. Knox, ”Theory of Excitons”, in: Solid State Physics Supplement, Vol. 5, eds. H. Ehrenreich, F. Seitz, D. Turnbull, 2nd print, Academic Press, New York (1972)Google Scholar
  32. [30]
    S. Nakajima, Prog. Theor. Phys. 20, 948 (1958)CrossRefGoogle Scholar
  33. [31]
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)CrossRefGoogle Scholar
  34. [32]
    P. Reineker, R. Kühne, Phys. Rev. B 21, 2448 (1980)CrossRefGoogle Scholar
  35. [33]
    V. Čápek, I. Barvík, J. Phys. C 18, 6149 (1985)CrossRefGoogle Scholar
  36. [34]
    I. Barvík, V. Čápek, Phys. Rev. B 40, 9973 (1989)CrossRefGoogle Scholar
  37. [35]
    P. Reineker, ”Exciton Dynamics in Molecular Crystals and Aggregates; Stochastic Li- ouville Equation Approach: Coupled Coherent and Incoherent Motion, Optical Line Shapes, Magnetic Resonance Phenomena”, in: Springer Tracts in Modern Physics, Vol. 94, ed. G. Hohler, Springer, Berlin, Heidelberg, New York (1982)Google Scholar
  38. [36]
    P. Reineker, Phys. Lett. 44A, 429 (1973)Google Scholar
  39. [37]
    P. Reineker, H. Haken, Z. Phys. 250, 300 (1972)CrossRefGoogle Scholar
  40. [38]
    P. Reineker, Phys. Lett 42A, 389 (1973)Google Scholar
  41. [39]
    P. Reineker, Z. Phys. 261, 187 (1973)CrossRefGoogle Scholar
  42. [40]
    E. Schwarzer, H. Haken, Phys. Lett. 42A, 317 (1972)Google Scholar
  43. [41]
    P. Reineker, phys. stat. sol. (b) 52, 439 (1972)CrossRefGoogle Scholar
  44. [42]
    P. Reineker, Z. Naturforsch. 29a, 282 (1974)Google Scholar
  45. [43]
    P. Reineker, Phys. Rev. B 19, 1999 (1978)CrossRefGoogle Scholar
  46. [44]
    V. M. Kenkre, T. S. Rahman, Phys. Lett. 50A, 170 (1974)Google Scholar
  47. [45]
    U. Schmid, P. Reineker, Mol. Physics 55, 77 (1985)CrossRefGoogle Scholar
  48. [46]
    J. Kohler, P. Reineker, Chem. Phys. 93, 209 (1985)CrossRefGoogle Scholar
  49. [47]
    R. Winkler, P. Reineker, Mol. Physics 60, 1283 (1987)CrossRefGoogle Scholar
  50. [48]
    K. Lindenberg, B. J. West, Phys. Rev. Lett. 51, 1370 (1983)CrossRefGoogle Scholar
  51. [49]
    S. Pabst, Diplom-Thesis, University of Ulm (1989)Google Scholar
  52. [50]
    H. Daubler, Diplom-Thesis, University of Ulm (1989)Google Scholar
  53. [51]
    A. Blumen, R. Silbey, J. Chem. Phys. 69, 3589 (1978)CrossRefGoogle Scholar
  54. [52]
    I. B. Rips, V. Čápek, phys. stat. sol. (b) 100, 451 (1980)CrossRefGoogle Scholar
  55. [53]
    K. Kitahara, J. W. Haus, Z. Phys. B 32, 419 (1979)CrossRefGoogle Scholar
  56. [54]
    Y. Inaba, J. Phys. Soc. Jap. 50, 2473 (1981)CrossRefGoogle Scholar
  57. [55]
    K. Kassner, P. Reineker, Z. Phys. B 59, 357 (1985)CrossRefGoogle Scholar
  58. [56]
    K. Kassner, P. Reineker, Z. Phys. B 60, 87 (1985)CrossRefGoogle Scholar
  59. [57]
    R. C. Bourret, U. Frisch, A. Pouquet, Physica 65, 303 (1973)CrossRefGoogle Scholar
  60. [58]
    V.E. Shapiro, V. M. Loginov, Physica 91A, 563 (1979)Google Scholar
  61. [59]
    A. Pringsheim, ”Uber einige Konvergenzkriterien fur Kettenbriiche mit komplexen Gliedern” Sitzungsberichte Miinchen 35, 359 (1905)Google Scholar
  62. [60]
    Y. Inaba, Thesis, University of Tokyo (1982)Google Scholar
  63. [61]
    P. W. Anderson, Phys. Rev. 109, 1492 (1958)CrossRefGoogle Scholar
  64. [62]
    K. Kassner, Z. Phys. B 70, 229 (1988)CrossRefGoogle Scholar
  65. [63]
    D. Jérome, L. G. Caron, ”Low-Dimensional Conductors and Superconductors”, NATO ASI Series B 155, Plenum, New York, London (1986)Google Scholar
  66. [64]
    V. Enkelmann, B. S. Mora, Ch. Krohnke, G. Wegner, Chem. Phys. 66, 303 (1982)CrossRefGoogle Scholar
  67. [65]
    J. Sigg, Th. Prisner, K. P. Dinse, H. Brunner, D. Schweitzer, K. H. Hausser, Phys. Rev. B 27, 5366 (1983)CrossRefGoogle Scholar
  68. [66]
    W. Stöcklein, B. Bail, M. Schwoerer, D. Singel, J. Schmidt, ”Spin Resonance and Conductivity of Fluoranthenyl Radical Cation Salts”, in: Organic Molecular Aggregates, eds. P. Reineker, H. Haken, H. C. Wolf, Springer, Berlin, Heidelberg, New York, Tokyo (1983)Google Scholar
  69. [67]
    M. J. Hennessy, C. D. McElwee, P. M. Richards, Phys. Rev. B 7, 930 (1973)CrossRefGoogle Scholar
  70. [68]
    R. Czech, K. Kehr, Phys. Rev. B 34, 261 (1986)CrossRefGoogle Scholar
  71. [69]
    H. Mori, Prog. Theor. Phys. 34, 423 (1965)CrossRefGoogle Scholar
  72. [70]
    J. Kohler, Thesis, University of Ulm (1989)Google Scholar
  73. [71]J. Kohler, P. Reineker, Chem. Phys., in printGoogle Scholar
  74. [72]
    W. Hackbusch, ”Multi-Grid Methods and Applications”, Springer, Berlin, Heidelberg, New York (1985)Google Scholar
  75. [73]
    H. Port, H. Nissler, R. Silbey, J. Chem. Phys. 87,1994 (1987)CrossRefGoogle Scholar
  76. [74]
    J. Klafter, J. Jortner, J. Chem. Phys. 68, 1513 (1978)CrossRefGoogle Scholar
  77. [75]
    D. L. Huber, W. Y. Ching, Phys. Rev. B 39, 8652 (1989)CrossRefGoogle Scholar
  78. [76]
    M. Schreiber, Y. Toyozawa, J. Phys. Soc. Jpn. 51, 1528 (1982)CrossRefGoogle Scholar
  79. [77]
    J. Köhler, A. M. Jayannavar, P. Reineker, Z. Phys. B 75, 451 (1989)CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • P. Reineker
    • 1
  • J. Köhler
    • 1
  • A. Jayannavar
    • 1
  • V. Kraus
    • 1
  • H. Däubler
    • 1
  1. 1.Abteilung Theoretische PhysikUniversität UlmUlmGermany

Personalised recommendations