Interpretation of Inelastic Light Scattering Measurements in 4He

  • J. W. Halley
  • M. S. Korth
Part of the NATO ASI Series book series (NSSB, volume 257)


We describe calculations of the inelastic light scattering spectrum for frequencies of the order of up to several times the roton frequency. The calculations are based on the two body approximation in a theoretical description of the fluid due to Pandiharipande and Manousakis. We use the results to determine the role of two mechanisms for the development of multiquasiparticle structure in the spectrum which we proposed earlier. We find that the mechanism arising from quasiparticle anharmonicities plays a much larger role in producing these structures in the spectrum than does the mechanism arising from nonlinearities in the relation between the density and quasiparticle operators. We find that the three quasiparticle couplings on which the theory rests depend strongly on the magnitudes and directions of the quasiparticles in a way which strongly favors processes involving colinear momenta. This has striking qualitative effects on the details of the predicted spectra.


Helium Atom Quasi Particle Quasiparticle State Body Approximation Quasiparticle Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Greytak and J. Yan, Phys. Rev. Lett. 22, 987 (1969)ADSCrossRefGoogle Scholar
  2. 2.
    J. W. Halley, Bull. Am. Phys. Soc. 13, 398 (1968)Google Scholar
  3. J. W. Halley, Phys. Rev. 181, 338 (1969)ADSCrossRefGoogle Scholar
  4. 3.
    F. Iwamoto, Prog. Theo. Phys. 44, 1135 (1970)ADSCrossRefGoogle Scholar
  5. 4.
    J. Ruvalds and A. Zawadowski, Phys. Rev. Lett. 25, 333 (1970)ADSCrossRefGoogle Scholar
  6. A. Zawadowski, J. Ruvalds, and J. Solana, Phys. Rev. A5, 399 (1972)ADSCrossRefGoogle Scholar
  7. 5.
    T. J. Greytak, R. Woerner, J. Yan and R. Benjamin, Phys. Rev. Lett. 25, 1547 (1970)ADSCrossRefGoogle Scholar
  8. 6.
    C. A. Murray, R. L. Woerner, and T. J. Greytak, J. Phys. 8, L90 (1975)ADSGoogle Scholar
  9. 7.
    J. W. Halley, in “Elementary Excitations in Quantum Fluids”, K. Ohbayashi and M. Watabe, eds., Springer-Verlag Series in Solid State Sciences 79, p. 106 (1989)Google Scholar
  10. 8.
    M. Udagawa, H. Nakamura, M. Murakami and K. Ohbayashi, Phys. Rev. B34, 1563 (1986)ADSCrossRefGoogle Scholar
  11. 9.
    K. Ohbayashi and M. Udagawa, Phys. Rev. B31, 1324 (1985)MathSciNetADSCrossRefGoogle Scholar
  12. 10.
    K. Ohbayashi and A. Ikushima, J. Phys. 7, L206 (1974)ADSGoogle Scholar
  13. 11.
    E. Manousakis and V. R. Pandharipande, Phys. Rev B30, 5062 (1984)ADSCrossRefGoogle Scholar
  14. 12.
    E.Manousakis and V. R. Pandharipande, Phys. Rev. B31, 7029 (1985); B33, 150 (1986)Google Scholar
  15. 13.
    R. P. Feynman and M. Cohen, Phys. Rev. 102, 1189 (1956)ADSMATHCrossRefGoogle Scholar
  16. 14.
    P. Kleban and R. Hastings, Phys. Rev. B11, 1878 (1975)ADSCrossRefGoogle Scholar
  17. 15.
    H. N. Robkoff and R. B. Hallock, Phys. Rev. B24, 159 (1981)ADSCrossRefGoogle Scholar
  18. 16.
    P. Dacre, Molecular Physics 45, 17 (1982)ADSCrossRefGoogle Scholar
  19. 17.
    M. J. Stephen, Phys. Rev. 187, 279 (1969)ADSCrossRefGoogle Scholar
  20. 18.
    R. A. Cowley and A. D. B. Woods, Can. J. Phys. 49, 177 (1971)ADSCrossRefGoogle Scholar
  21. 19.
    J. W. Halley and M. S. Korth, unpublishedGoogle Scholar

Copyright information

© Plenum Press, New York 1991

Authors and Affiliations

  • J. W. Halley
    • 1
  • M. S. Korth
    • 2
  1. 1.School of Physics and AstronomyUniversity of MinnesotaMinneapolisUSA
  2. 2.Physics DepartmentUniversity of MinnesotaMorrisUSA

Personalised recommendations